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SYLLABUS FOR A GRADUATE COURSE IN SENSITIVITY ANALYSIS 

 
T.H. Andres 

Computer Science Department, University of Manitoba, Canada 

tandres@cs.umanitoba.ca 

 

Sensitivity analysis (SA) is the scientific development of a simple empirical model for the output variation of a 

complex system. It uses experimentation and statistical analysis of results to generate simple models (e.g., 

sensitivity coefficients, regression equations or response surfaces). 

 

Unlike undergraduates, grad students encounter complex systems. SA is the tool they need to understand them. 

A graduate course in SA can have a wide appeal to students in science, engineering, and business. The professor 

should be able to accommodate students with diverse backgrounds. 

 

Typically “complex system” means a simulation model with many input parameters. To set up an analysis, the 

student must learn to assess parameter uncertainties/ranges, design sets of experiments, compute parameter sets 

from experimental designs, and record inputs and outputs to be analyzed. A student needs to know how to use 

several statistical procedures.  

 

Practitioners may combine several of these steps in a package like SimLab [1], and so such tools should be 

demonstrated. Pedagogically, it is more effective to teach students how to use a spreadsheet package (e.g., 

Microsoft Excel [2]) for SA, so that the student can examine and modify each step in the SA procedure, without 

knowing a particular programming language. 

 

The scope of the course beyond the preliminaries should include discussion of: 

• sampling designs (random, one-at-a-time, fractional factorial, latin hypercube, quasirandom …); 

• regression analysis (correlations, linear regression, interpretation of standard results); 

• analysis of variance (in fractional factorial results, using Sobol’ and total sensitivities); 

• transformations (log, power, rank); 

• plotting results (scatterplots, contour plots, histograms and frequency polygons).  

 

Student activities for credit should include: 

• reading about a published SA technique, and presenting it in class (research, presentation skills); 

• implementing a published SA technique (technical proficiency, application of theory to practice); 

• carrying out a case study (mastery of skill set). 

 

A good reference book has been [3], and a new textbook is under development. 

 

The overall goal of the course should be that the graduate student knows when and how to apply basic SA 

techniques, and where to find additional resources for more challenging projects. 

 

References 

 

[1] SIMLAB Documentation, Version 3.0.8. http://simlab.jrc.it/docs/html/index.html. 

[2]  Microsoft Office Excel 2007 product guide. http://office.microsoft.com/search/redir.aspx? 

AssetID=XT101662581033&CTT=5&Origin=HA101680001033. 

[3] Saltelli A, Chan K, Scott ME: Sensitivity Analysis. John Wiley & Sons Ltd., Toronto, 2000. 

 

mailto:tandres@cs.umanitoba.ca
http://simlab.jrc.it/docs/html/index.html
http://office.microsoft.com/search/redir.aspx?AssetID=XT101662581033&CTT=5&Origin=HA101680001033
http://office.microsoft.com/search/redir.aspx?AssetID=XT101662581033&CTT=5&Origin=HA101680001033
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DATA ASSIMILATION AND BEST-ESTIMATE MODEL VALIDATION 

ACTIVITIES IN EURATOM-FISSION PROGRAMS 
 

D.G. Cacuci  

Nuclear Energy Division, Commissariat a l’Energie Atomique, France 

and 

Institute for Nuclear Technology and Reactor Safety, University of Karlsruhe, Germany 

dan-gabriel cacuci@cea.fr and cacuci@ikr.uni-karlsruhe.de  

 

As is well known, a physical system and/or the result of an indirect experimental measurement are 

characterized by independent variables, dependent variables, and relationships between these quantities. Such 

relationships can be modelled mathematically in terms of: (a) linear and/or nonlinear equations that relate the 

system's independent variables and parameters to the system's state (i.e., dependent) variables; (b) inequality 

and/or equality constraints that delimit the ranges of the system's parameters; and (c) one or several quantities, 

customarily referred to as system responses (or objective functions, or indices of performance, or results of 

indirect measurements), which are to be analyzed as the parameters vary over their respective ranges. 

Mathematical models also include parameters whose actual values are not known precisely, but may vary within 

some ranges that reflect our incomplete knowledge or uncertainty regarding them. Furthermore, the methods 

needed to solve various equations numerically introduce themselves (numerical) errors. The effects of such 

errors and/or parameter variations must be quantified in order to assess the respective model’s range of validity. 

Moreover, the effects of uncertainties in the model’s parameters on the uncertainty in the computed results must 

also be quantified. Generally speaking, the objective of sensitivity analysis is to quantify the effects of 

parameter variations on computed results. Terms such as influence, ranking by importance and dominance, are 

all related to sensitivity analysis. On the other hand, the objective of uncertainty analysis is to assess the effects 

of parameter uncertainties on the uncertainties in computed results. Sensitivity and uncertainty analyses can be 

considered as formal methods for evaluating data and models because they are associated with the computation 

of specific quantitative measures that allow, in particular, assessment of variability in output variables and 

importance of input variables (see, e.g., Refs [1] and [2], and references therein). 

Models of complex physical systems usually involve two distinct sources of uncertainties, namely: (i) 

stochastic uncertainty, which arises because the system under investigation can behave in many different ways, 

and (ii) subjective or epistemic uncertainty, which arises from the inability to specify an exact value for a 

parameter that is assumed to have a constant value in the respective investigation. Epistemic (or subjective) 

uncertainties characterize a degree of belief regarding the location of the appropriate value of each parameter. In 

turn, these subjective uncertainties lead to subjective uncertainties for the response, thus reflecting a 

corresponding degree of belief regarding the location of the appropriate response values as the outcome of 

analyzing the model under consideration. A typical example of a complex system that involves both stochastic 

and epistemic uncertainties is a nuclear power reactor plant: in a typical risk analysis of a nuclear power plant, 

stochastic uncertainty arises due to the many hypothetical accident scenarios which are considered in the 

respective risk analysis, while epistemic uncertainties arise because of the many uncertain parameters that 

underlie the estimation of the probabilities and consequences of the respective hypothetical accident scenarios.  

Sensitivity and uncertainty analysis procedures can be either local or global in scope. The objective of 

local analysis is to analyze the behaviour of the system response locally around a chosen point or trajectory in 

the combined phase space of parameters and state variables. On the other hand, the objective of global analysis 

is to determine all of the system's critical points (bifurcations, turning points, response maxima, minima, and/or 

saddle points) in the combined phase space formed by the parameters and dependent (state) variables, and 

subsequently analyze these critical points by local sensitivity and uncertainty analysis. The methods for 

sensitivity and uncertainty analysis are based on either deterministic or statistical procedures. In principle, both 

types of procedures can be used for either local or for global sensitivity and uncertainty analysis, although, in 

practice, deterministic methods are used mostly for local analysis while statistical methods are used for both 

local and global analysis.  

Most of methods currently used in the nuclear industry and technical safety organizations can be roughly 

decomposed in four sequential steps. The end-status of each step determines if the next step is performed or not. 

The first step is devoted to analyzing the code’s applicability and identifying uncertain parameters and important 

phenomena of the transient scenario under consideration. On this basis, the code’s predictive capability is 

verified against the model’s inventory, the model’s origin and background. Finally, one identifies the output 

variables (i.e., results) of interest for post-processing. The second step is devoted to reviewing the correlations 

that involve the uncertain parameters, and identifying the parameter that are potentially significant for the 

physical phenomena observed during the transient scenario under consideration. This (second) step thus 

corresponds to a “sensitivity analysis”. In the third step, experimental uncertainties of the initial and boundary 

conditions and expert judgment (supported, when available by the “code qualification test-experiment matrix”) 

mailto:cacuci@cea.fr
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are employed to obtain uncertainty bands and subjective probability density functions for the uncertain 

parameters. In the fourth step, the various uncertainties are combined probabilistically via “response surface 

methods” in order to derive “uncertainties” for the results of interest. Examining carefully all of these steps 

clearly reveals that a significant amount of conservatism remains embedded even in the “best-estimate” codes, 

and that the “code validation and qualification” processes are not yet entirely objective. In particular, it seems 

necessary to incorporate concepts of data adjustment and assimilation [3] into the construction, validation and 

qualification of best-estimate simulation tools. 

The development of software modules for validation and verification of simulation programs, including 

global sensitivity and uncertainty analysis, is a generic issue of fundamental importance for the safe operation of 

all types of reactors, while allowing reductions in design margins. Numerical simulations comprise transversal 

activities common to all types of reactors, and also include specific issues concerning specific types of reactor 

systems. Besides performing specific experiments and developing specific simulation models, essential 

activities are “code verification” (“is the code solving the mathematical model correctly?”), “code validation” 

(“does the model represent reality?”), and “code qualification” (certifying that a proposed simulation/design 

methodology/system satisfies all performance and safety specifications). Code validation and qualification 

(V&Q) can be attained only by selected benchmarking, taking into account systematically (i.e., using 

sensitivities) all sources of uncertainties (computational, experimental, etc.). The validation and qualification of 

numerical simulations against experiments requires the inclusion of methods of sensitivity and uncertainty 

analysis together with data assimilation in the presence of both computational and experimental uncertainties.  

The development of standardized validated and qualified tools for numerical simulations is a key activity 

within the EURATOM-Fission Programs. This paper will highlight the activities and methods regarding 

sensitivity and uncertainty analysis, and best-estimate validated simulation code systems planned within the FP-

6 EURATOM Coordination Action “Sustainable Nuclear Fission Technology Platform” (SNF-TP). The SNF-

TP [4] proposes research structures and programs for developing a coherent European strategy for: (i) improving 

the performance of currently operating (Generation II) and future near-term (Generation III and III+) Light 

Water Reactors (LWR) while maintaining a high degree of safety, performing studies regarding the feasibility of 

novel designs, and establishing a unified approach of LWR life time extension; (ii) establishing a sustainable, 

closed fuel cycle for electricity production using innovative (Generation IV) fast neutron reactor systems in 

conjunction with partitioning and transmutation (P&T) technologies; (iii) establishing a commercially viable 

High Temperature Reactor (V/HTR) for process heat and hydrogen production; (iv) assuring adequate training 

to preserve and enhance the human competence in the nuclear field, and maintaining/renewing the infrastructure 

necessary for achieving sustainability of nuclear energy; and (v) implementing a Strategic Research Agenda for 

conceiving and coordinating the European research and development in nuclear science and technology.  

 

References 

 

 [1] D.G. Cacuci, Sensitivity and Uncertainty Analysis: Theory, Volume 1, Chapman & Hall/CRC, Boca Raton, 

2003. 

[2] D.G. Cacuci, M. Ionescu-Bujor, and M.I. Navon, Sensitivity and Uncertainty Analysis: Applications to Large 

Scale Systems, Volume 2, Chapman & Hall/CRC, Boca Raton, 2005.  

[3] D.G. Cacuci, M.I. Navon, and M. Ionescu-Bujor, Computational Methods for Data Analysis and 

Assimilation, Chapman & Hall/CRC, Boca Raton, 2007.  

[4] “Sustainable Nuclear Fission Technology Platform (SNF-TP)”, EURATOM Contract Nr. FP6-036410, July 

2006, European Commission, Brussels. 
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ANALYTICAL CALCULATIONS OF SOBOL INDICES FOR THE GAUSSIAN 

PROCESS METAMODEL 

 

A. Marrel1*, B. Iooss1, O. Roustant2 

1CEA Cadarache, France; 2Ecole des Mines de Saint Etienne, France 

amandine.marrel@cea.fr 

 

Introduction 

This paper deals with the analytical formulations for the Gaussian process model of the first order 

Sobol indices )(Var)]([Var YXYS ii   (1) where X=(X1,…, Xd) and Y is the model input and output 

variables. The Gaussian process model (Sacks et al. [3]), also called kriging, is often used as a metamodel to 

approximate complex and expensive computer codes. Because of their lower computational cost, metamodels 

are useful in uncertainty, sensitivity and optimisation studies, which require a large number of function 

evaluations. The estimation of one Sobol index is usually done by sampling adequately the input parameters 

space via Monte Carlo or other algorithms, which can require thousands model evaluations (Saltelli et al. [4]). In 

these algorithms, the full model (computer code) can be directly replaced by a metamodel. Some recent works 

have addressed the possibility to take advantage of the known analytical formula of some metamodels to derive 

analytical expressions of Sobol indices: Chen et al. [1] which use tensor-product formulation and Oakley and 

O’Hagan [2] which consider the Bayesian formalism of Gaussian processes. Our work proposes to develop the 

analytical formulation of Sobol indices for the Gaussian process model viewed as a global stochastic model and 

not as a simple predictor (as in Chen et al. [1]). On a simple example, comparisons are made between the Sobol 

indices based on the predictor and those based on the global model, in terms of the metamodel predictivity. 

 

The Gaussian process model (Gp model) 

Gp modeling considers the deterministic computer code output ycode(x) as the realization of a random 

function Y(x,ω) defined on Ω x Rd, including a regression part and a Gaussian stochastic process Z(x,ω): 

),()(),(  xZxFxY        (2) 

with  a regression parameter vector and F(x)=[f0(x),…, fk(x)] a vector of elementary functions. We take Z(x,ω) 

centred, second order stationary with variance  and a generalized exponential correlation function: 

 


 
d

i

p

iiip

i
uxuxRuYxY

1

, -exp²),(²)),(),,((Cov  
 with i>0 and 0<pi2. Gp model parameters 

(p) are estimated by maximum likelihood on a learning sample (Xs, Ys) made by n simulations of 

computer code: Xs=(x(1),…,x(n)), Ys=ycode(Xs). Conditioning the joint probability distribution by the observed 

data (Xs, Ys), the conditional Gaussian process YGp/(Xs, Ys) is defined on Ω x Rd and characterized by: 
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where  ),(,),,()( )(

,

)1(

,, xxRxxRxr n

ppp    , Fs=F(Xs) and SR is the covariance matrix of Xs. The 

expression of conditional Gp model mean is used as a predictor and often denoted )(ˆ xY . The variance 

expression corresponds to the mean square error of the predictor and gives a local indicator of prediction 

accuracy. These analytical expressions are important advantages in uncertainty propagation, optimization and 

sensitivity analysis studies, contrary to other metamodels which give only the predictor. To validate the 

predictor, we use a test sample, made by new computer code simulations, to estimate the predictive residual sum 

of squares (PRESS) and  its associated predictivity coefficient Q2 (corresponding to R² for prediction points).  

 

Sensitivity analysis 

From the expression of conditional Gp model, two approaches to compute Sobol indices are possible:  

- only the predictor expression )(ˆ xY is used, in other words the mean of Gp process; 

- the whole global conditional Gp process YGp/(Xs, Ys) is used. 

 

The second approach takes into account not only the mean of conditional Gp model but also its covariance 

structure. In this case, following the Sobol approach (1), we define a new sensitivity measure iS
~

 which is a 

random variable. Its expectation can be considered as a sensitivity indice (denoted
iS

~ ) and its variance 
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(denoted ²
iS

~ ) as an indicator of sensitivity indice accuracy. The two approaches can be defined as follows: 
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For the two approaches, the analytical formulas above lead to numerical integrals, and more precisely to one-

dimensional integrals in the case of independent inputs, which is another advantage of Gp metamodel. 

 

To compare and study the two indices, we consider a simple example based on the Ishigami function 

)sin(1.0)²(sin7)sin(),,( 1

4

321321 XXXXXXXf  where Xi ~U[- π ; π ]. The theoretical values of Sobol 

indices are known: S1 = 0.42, S2 = 0.58 and S3 = 0. To study the convergence of iS and 
iS

~ relatively to the 

accuracy of Gp modeling represented by the coefficient Q2, we simulate different learning samples with varying 

size n.  For each size n, a Latin Hypercube sample is simulated, the Ishigami function is evaluated on the n data 

points, the conditional Gp model is built on this learning sample and the predictivity coefficient Q2 is estimated 

on a new test sample of size 10000. The Sobol indices are computed for the two approaches (4). To observe the 

results, empirical mean and standard deviation of each indice are computed for same values of Q2 (or same 

classes of Q2). Figure (1) illustrates the convergence of 3S and 
3

~
S

  and figure (2) shows the convergence of the 

ratio of S1 and S2. Sobol indices computed with the whole model 
iS

~ is more robust and less dispersed, 

particularly for low accuracy values of Gp model (Q² < 0.8). The convergence to the true value is faster with the 

whole Gp model. However, for high values of accuracy of Gp model (Q² > 0.9), the two approaches give the 

same values and the first one (with only the predictor) remains easier to compute. In all cases, the second 

approach taking into account the covariance structure is more robust and allows to estimate the uncertainty of 

the sensitivity coefficient with 
iS

~ . It justifies the use of conditional Gp model as metamodel.                   
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1. Introduction 

 One issue that can not be ignored in risk assessment is the existence of uncertainties 

of input parameters. Generally the study of the output uncertainty of a model due to the 

uncertainties of the model input parameters is called uncertainty analysis (UA), while the 

determination of the input parameter that most influence the model output is the job of 

sensitivity analysis (SA).  

 Given a model Y=g(X), where Y is the model output of interest, X={X1, X2, …Xn} is 

the set of input parameters, the traditional way to measure the influence of a input parameter 

on the output is Sxi=∂Y/∂Xi, which only looks at the importance of a parameter in the 

neighbourhood of its nominal value.  

It shows poor performance when a model is nonlinear and non-monotonic. To take the 

full range of an input distribution into consideration, Hora & Iman [1] proposed a variance-

based measure Varxi[E(Y|Xi)], which represents the expected reduction of output variance due 

to the ascertaining of parameter Xi. Homma & Saltelli [2] improved Hora & Iman’s measure 

further by proposing two sensitivity indicators S1
xi=Varxi[E(Y|Xi)]/Var(Y), and ST

xi=Ex-

i[Var(Y|X-i)]/Var(Y). 

Variance-based measure might not be robust when, for example, dealing with a highly-

skewed or fat-tailed distribution [3]. Iman & Hora [3] proposed a bivariate measure (Rα, R1-α) 

to calculate the importance of input parameters, Rα=Y*
α/Yα, and R1-α= Y*

1-α/Y1-α, where Yα, Y1-

α represent the α and 1-α quantiles of the unconditional distribution of a model output, Y*
α and 

Y*
1-α represent the conditional distribution of this output. Though the pair (Rα, R1-α) provides a 

wider range of information about the change in output distribution due to a change of input 

variation, it does not sufficiently reflect the characteristics of the whole output distribution 

[4].  

 Based on information theory [5], Park & Ahn[4] adopted the discriminator 

I(i:o)=∫fi(x)Ln[fi(x)/fo(x)]dx to describe the relative impact on the change of the output 

distribution induced by various distributional changes in the inputs. One criticism of this 

measure was that the use of data fitting procedures to get the PDFs(Possibility Density 

Function) fi(x) and fo(x)might bring about additional uncertainty [6]. 

In addition, Chun, Han and Pak[6] adopted Minkowski distance, which was originally 

used to measure the distance between two points, to estimate the difference between two 

CDFs (Cumulative Distribution Function) of the model output. The 2-norm Minkowski 

distance normalized with the mean of output distribution for the base case is proposed, which 

is written as )()][():( 2/11

0

2 oo
p

i
p YEyyoiMD   . 

 To calculate I(i:o) and MD(i:o), one needs to assume a change of input distribution, 

such as uncertainty is completely eliminated and so on. Therefore, the importance ranking 

based on I(i:o) and MD(i:o) are sensitive to the assumed input distributional change. 
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Suppose no change of the distributions of input parameters, Borgonovo [7] proposed a 

moment independent measure, )]([
2
1

iXii XsE , which evaluates the influence of the entire 

input distribution on the entire output distribution. The parameter s(Xi)=∫|fY(y)-fY|Xi(y)|dy, 

measures the difference between the unconditional and 

conditional PDFs. Further explanation of δi can be referred to Liu 

& Homma(this issue). 

Given the current distribution of each input parameter, in this 

work the authors proposed a new measure, which is different 

from δi, to estimate the influence of input parameters on the 

model output of interest.  

2. A new sensitivity analysis measure 

 Let FY(y) be the unconditional CDF of the model output Y, 

and FY|Xi(y) be the CDF of the output Y when an input parameter Xi is fixed at a value, e.g., 

xi
*. In statistical testing, e.g., the Kolmogorov-Smirnov test, we know the difference of two 

distributions can be measured by the greatest vertical distance of 

the two curves, Dk-s=sup|FY(y)- FY|Xi(y)|, as shown in Fig. 1. It has 

been pointed out that two-sided Kolmogorov-Smirnov test based 

on Dk-s are consistent against all types of differences(e.g. 

differences between means(or medians), difference in variances) 

that may exist between two distributions [8]. Intuitively it comes 

into mind that if the area surrounded by the two curves is adopted 

to measure the deviation of FY|Xi(y) from FY(y)(see Fig. 2), it will 

be more meaningful than DK-S. This is the origin of this new 

measure. 

The surrounded area AXi can be calculated as: 

dyyFyFA
ii XYYX   |)()(| |

                                  (1) 

Or                               
 

1

0
|)()(|  dYYA

ii XX

                                   (2) 

Where Y(α) and YXi(α) is the inverse function of FY(y) and FY|Xi(y), respectively. 

If there is no interaction between the two curves, i.e., the difference YXi(α)-Y(α)(or FY(y)-

FY|Xi(y))does not change its sign over the entire range of Y, it is known from Eq.(2) that AXi 

measures the absolute value of the difference of the output expectations in the two different 

conditions, i.e., AXi=|E(Y|Xi)-E(Y)|, this is the indication of AXi in this case.  

 One can easily see that the expected deviation of FY|Xi(y) from FY(y) can be calculated 

with 

 
    iXiXiiXiXXX dxdYYxfdxxAxfAE

iiiiii
]|)()(|)[()()()(

1

0


                  (3) 

 EXi(AXi) can therefore be used to measure the influence of the parameter Xi on the 

output Y. The normalized expression SXi is employed formally as the sensitivity indicator of 

Xi. 

)(

)(

YE

AE
S ii

i

XX

X 
                                         (4) 

Where E(Y) is the expectation of the model output Y given the current distributions of input 

parameters. 

3. Computational method for this measure 

For most risk analysis problems, the output distribution can not be preliminarily known. 

Monte Carlo method is popularly used to obtain the distribution of a model output. To 

calculate the sensitivity indicator of a given parameter Xi (Suppose the number of samples is 

Y

CDF

F
Y
(y)

F
Y|Xi

(y)

D
k-s

0

1.0

 
Fig. 1 Difference of F1(y) and 

F2(y) is measured by Dk-s. 

Y

CDF

F
Y
(y)

F
Y|Xi

(y)

A
Xi

0

1.0

 
Fig. 2 Deviationg of FY|Xi(y) from 

FY(y) is measured by AXi. 
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n.), one first generates the output distribution FY(y). It can be approximated by the empirical 

CDF SY
n(y), which is easily obtained from Monte Carlo simulation [6].  

nyyTyS
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k

k
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Y /)()(

1



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                                     (5) 












k

k

k
yyif

yyif
yyT

,0

,1
)(

                                    (6) 

Where n is the sample size and k is the sample index. The quantiles Y(α)(α=k/n, k=1,2,…n) 

can easily be obtained from the inverse function of SY
n(y). 

The expectation of the output Y is then calculated from 

nyYE
n

k

k /)(
1





                                       (7) 

Now we generate a value xi
(1) for Xi from its distribution. With other input parameters 

randomly sampled from their distributions, we can get FY|Xi= xi (1)(y)(approximated by 

Sn
Y|Xi=xi(1)(y)). Based on Eq.(10), AXi(xi

(1))can be obtained. We then generate another value xi
(2) 

for Xi, get FY|Xi=xi(2)(y), and calculate AXi(xi
(2)). Repeating the above procedures for n times in 

total, finally we can estimate SXi 

)(/]/)([)(/)(
1

YEnxAYEAES
n

k

k
iXXXX iiii 




                              (8) 

4. Concluding remarks 

In this work a new sensitivity measure, SXi, which considers not only the entire range of 

input variation, but also the entire range of output distribution, is proposed. Its geometrical 

meaning is intuitive and physical indication is clear. A Monte Carlo-based computational 

method is presented to estimate SXi. It is expected that this measure is robust. Further 

refinement of the computational method for SXi and the comparison of SXi with others 

measures are in progress. 
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This work compares some recent techniques to execute sensitivity analysis of model output. We 

highlight strengths and weaknesses of each technique in terms of efficiency and computational cost, thus 

enabling the user to choose the more suitable method depending on the computational model analysed.  

The paper focuses on three recently developed techniques, which are not yet commonly known in the literature: 

the State Dependent Parameter modeling (SDP) [1], the Random Balance Designs (RBD) [2], and the formula 

for estimating small sensitivity indices proposed by Kucherenko and Mauntz [3].  

 

The SDP technique is a full meta-modelling approach, which is based on recursive filtering and 

smoothing estimation, to estimate the truncated high-dimensional model representation (HDMR) expansion up 

to the third order. The method is theoretically simple and all measures of interest are computed by means of a 

single set of model runs. As it can be applied using any kind of Monte Carlo sampling technique (or even using 

a sample coming from an experiment), the technique is very flexible. As other meta-modelling approaches in the 

literature ([4, 5] or the Gaussian emulator by Oakley and O’Hagan [6]; see also [7], for a review of smoothing 

approaches to sensitivity analysis), it is very efficient and allows for a significant reduction in the cost of the 

analysis. When coupled with low discrepancy sampling methods (e.g. quasi-random sequences), the efficiency 

of SDP estimates can be optimally exploited. 

 

The RBD procedure combines Satterthwaite’s random balance designs [8] with the Fourier Amplitude 

Sensitivity Test (FAST) (see [9]). Contrarily to FAST, in RBD the input space is explored by using one single 

frequency: this has the advantage to make the computational cost independent from the number of input factors. 

Therefore RBD remains significantly cheap even for models with several parameters. Furthermore, the method 

is easy to implement and handy to use.  

 

The approach of Kucherenko and Mauntz is a variant of the method of Sobol’. The approach yields 

more accurate estimation formulas with a lower computational cost. Improved formulas are based on the 

extended version of Sobol’ presented in [10]. All comparison studies show a significant improvement in the 

accuracy for improved formulas especially in the case of small sensitivity indices. 

 

The benchmark will be carried out on two test models. The first one is the Oakley and O’Hagan 

analytic function; it is composed of 15 input factors, of which five are very influential on the output variance, 

five are relatively influential and the remaining five are almost non influential [6]. 

 

The second test case is the Level E model. The model predicts the radiological dose to humans over 

geological time scales due to the underground migration of radionuclides from a nuclear waste disposal site 

through a system of natural and engineered barriers. We consider 12 independent uncertain parameters that can 

influence the radiological dose predictions. The core of the model is a set of partial differential equations which 

describe the nuclide migration in the geosphere. The model is time dependent: the simulated time frame ranges 

from 
4102   to 

6109   years. Of the 12 parameters, we concentrate on the two most influential ones and on a 

non influential one, so that to highlight different behaviours of the methods with respect to the parameters’ 

importance. 

 

For both test models we will execute the three sensitivity methods at similar number of model 

evaluations, and at increasing number of model evaluations, in order to investigate their relative accuracy. The 

relative merits of the methods are also discussed depending on the degree of importance of the input factors. 

Graphs with confidence bounds for the sensitivity indices are provided to assess the robustness of the sensitivity 

estimates. 
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Predictive ability of chemical kinetics models, as of models in general, is one of the most sought-after 

characteristics that underlie scientific activity in reaction chemistry.  Reliable model predictions are needed for 

both establishment of poorly-understood reaction mechanisms and quantitative application of established 

mechanisms.  The current level of predictiveness in most cases is far from satisfactory, and one is interested in 

identifying possible actions that could measurably improve it:  What causes/skews the model predictiveness?  

Are there new experiments to be performed, old repeated, and/or theoretical studies to be carried out?  What 

impact could a planned experimental work have?  What would it take to bring a given chemical kinetics model 

to a desired level of accuracy?  et cetera. 

 

The mathematical quest for the model predictiveness typically takes the form of propagation of errors [1-4], 

sensitivity analysis [5-8], and straight-forward optimization [9-14].  All such venues follow the two-state 

approach: estimation of model parameters and their uncertainties (generally, from experimental data) followed 

by the analysis of the influence of the estimated parameter values and uncertainties on model prediction.  So 

doing presumes model parameters to be “unique”, predetermined values and often with individual, uncorrelated 

uncertainties. 

 

An alternative approach, which we termed Data Collaboration, allows one to transfer uncertainties of the 

experimental data into model prediction directly.  It is a framework designed to make inferences from 

experimental observations in the context of an underlying model.  In the previous studies, we addressed 

collaborative features of this approach [15], mutual consistency of a set of experiments [15,16], and 

discrimination among competing reaction models [17].  In the present study, we return to our initial 

objective [18]: model prediction.  We show that Data Collaboration allows one to assess the propagation of 

uncertainty more deeply— determining which experiment/parameter contributes the most to the current 

uncertainty in model prediction, ranking such effects, and considering new or even hypothetical experiments—

thereby providing guidance in selecting additional experiments to perform. 
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A major part of the systems biology agenda involves the modelling and analysis of biochemical networks [1-5], 

including their sensitivity analysis [6].  This is typically done as ODE models in environments (such as Gepasi 

[7-9] and Copasi [10], with the networks encoded and annotated in the Systems Biology Markup Language 

(www.sbml.org/ and see [11; 12]). Biochemical networks tend to come in two flavours – metabolic (in which 

there is mass transfer involving chemical change) and informational or signalling (in which there is essentially 

not). Sensitivity analysis has been popularised in a local form when applied to the former kinds of (metabolic) 

network as Metabolic Control Analysis [13-15], but has been comparatively little applied to signalling networks. 

 

NF-B is a transcription factor that affects the production of many proteins, and has been implicated in cancer, 

apoptosis, rheumatoid arthritis and other disease syndromes, and NF-B is therefore part of an important 

signalling network. We analysed a model of the NF-B system [16; 17] containing some 64 reactions and 23 

variables, in which the nuclear concentration of NF-B exhibited damped oscillations and found using local 

sensitivity analysis that only some 8-9 of these reactions contributed significantly to the oscillations [18]. This 

enormous decrease in the number of possible pairwise interactions to consider between them (from 642 to 82) 

allowed us to determine that the sensitivity of appropriate output features to individual reactions could depend 

even qualitatively (in sign) on the value of other parameters [19], giving weight to the view that biochemical 

networks must be analysed not just at the level of the individual reaction [20; 21]. As with the positive 

feedforward loop [2], it seems that downstream events respond not to amplitude but to frequency in this system, 

thereby solving the problem of crosstalk [4; 17; 22; 23]. 

 

Local sensitivity analyses are essentially linear for small amplitude changes in parameters, but clearly these 

oscillating systems are highly nonlinear. Nevertheless similar conclusions can be drawn from global sensitivity 

analyses [24; 25]. 

 

Any biochemical network can be treated as a ‘communication channel’, and these are usually analysed using the 

methods of information theory [26; 27]. We have recently shown that the associations between inputs and 

outputs of such networks can be quantified via a decomposition of their mutual information into different 

components characterizing the main effect of individual inputs and their interactions [28]. Unlike variance-

based approaches to sensitivity analysis (as typically used in both local and global sensitivity analysis), our 

novel methodology can easily accommodate correlated inputs. 

 

Overall, sensitivity analysis is a major component of the systems biology modelling of biochemical networks, 

and it is important to develop and apply suites of new tools with which to carry it out. Making these tools 

available as Web Services [29; 30] will allow one to exploit environments such as Taverna [31-33] for 

incorporating them into biochemical workflows [4; 5], 
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The cell cycle is the sequence of events by which a growing cell replicates all of its components and divides 

them into two sister cells. The eukaryotic cell division cycle is driven by an underlying molecular network, 

which is centred around complexes of cyclin-dependent kinases and cyclins. Chen et al. [1] have created a 

detailed model to describe the cell cycle of budding yeast. This model is a system of algebraic-differential 

equations having 13 variables and 73 parameters. 

A dynamical system, such as the cell cycle can be characterized by the following initial value problem  

  ),(d/d pYfY t ,  0)0( YY    

where t is time, Y is the n-vector of variables, p is the m-vector of parameters, Y0 is the vector of the initial 

values of the variables, and f is the right-hand-side of the differential equations. Due to the presence of very 

different time-scales in most models, the dynamical dimension can be less than n. If the dynamical dimension is 

n1 in a period, this means that the same results could be obtained by using an ODE having n1 variables, while the 

values of other variables are kept constant or calculated by algebraic equations. 

By calculating the eigenvalues of the Jacobian, we have determined [2] the stability of the cell cycle 

trajectories. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation 

and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady 

state. During relaxation periods, the control system asymptotically approaches the new steady state. In the 

Figure, the excitation periods are denoted by grey shading. The dynamical dimension of the model changed [2] 

accordingly: it reached 7 in the excitation periods and decreased to 1 in each relaxation period. 

The local sensitivity function sik(t) can be calculated (see e.g. [3]) by solving the following initial value 

problem: 

FSJS    0S )0(  

where S(t)={sik(t)}={Yi/pk} is the time dependent local sensitivity matrix, J is the Jacobian (J={fi/Yj}) and 

matrix F contains the derivatives of the right-hand-side of the ODE with respect to the parameters (F={fi/pk}). 

The sik(t) local sensitivity functions show the effect of a small perturbation of parameter k on variable i. 

Local sensitivity functions were calculated for all variables and all parameters. The sensitivity functions of 

enzyme concentration Cln2 are plotted in the Figure. The sensitivity functions rise in some excitation periods 

and fall in all relaxation periods. The reason is that an effective parameter change soon causes deviations in the 

values of variables. These small deviations are amplified in the autocatalytic excitation regimes and the 

deviations are diminished in the relaxation regimes. 

It is also apparent from the Figure that several sensitivity functions have similar shape. The fact that some 

local sensitivity functions may have similar shape was first observed in flame models by Rabitz et al. (see e.g. 

[4]). We detected this phenomenon also in other combustion systems [5], [6] and called it the global similarity 

of sensitivity functions. We have proved analytically [5], that global similarity emerges if the dynamic 

dimension of the model is low at least in some periods and if excitation periods are present. Both requirements 

were found numerically in combustion models showing global similarity [5], [6]. Low dynamical dimension in 

some periods and presence of excitation periods are also characteristic for the budding yeast model. 

A closer inspection of the local sensitivity functions of the budding yeast model suggested that for each 

variable (i.e. protein concentration) the shape of the sensitivity functions could be grouped. Such a feature was 

not found in combustion models, because in high temperature combustion models the excitation is caused by a 

single group of strongly coupled reactions. In the case of the budding yeast cell cycle, several loosely connected 

excitation centres are present, which are firing one after the other according to a strict order. This causes the 

multiple similarities of the sensitivity functions. 

A semi-automatic classification of the shapes of the sik(t) functions in time interval [t1, t2] was carried out in 

the following way. First, the functions were normalized to unit peak value:      tststs ikikik max
 . Then, the 

integrated difference of the two normalized sensitivity functions was put into distance matrix C: 

       
1

2

d,
2

t

t

ilkii ttstslkC
  

This distance matrix was used as an input of a clustering code. The clustering calculations revealed that for each 

variable, 2 or 3 main similarity groups were detected. Note, that several sensitivity functions did not show 

similarity with the functions belonging to any of these groups. 



 25 

 If two sensitivity functions of variable i have similar shape, it means that the perturbation of the 

corresponding parameters have similar effect, which is an important structural information. Global similarity of 

the sensitivity functions of two parameters means that the change of one parameter can be fully compensated by 

an appropriate change of the other parameter. This is important information at the validation of complex 

dynamic models. For the budding yeast model, each parameter was changed by 10% and all other parameters 

were tuned one-by-one to check the presence of compensation effects. The results were in good accordance with 

the outcome of clustering calculations. 

The joint application of local sensitivity and time scale analyses is a very powerful set of tools for the 

investigation of complex dynamic models. It reveals the excitation periods, the change of dynamic dimension 

and the effect of parameter perturbation. Similarities of local sensitivity functions carry important information 

on the role of parameters in the model. Our calculations revealed substantial new information on a frequently 

studied biochemical system, the cell cycle of the budding yeast. 
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Figure: The local sensitivity functions of the enzyme concentration Cln2 for a whole cell cycle. Time zero 

marks the division of the cell. The length of a cell cycle is 144.92 minute. Grey shadings and white areas mark 

excitation and relaxation periods, respectively. The dark grey stripe near 104 minute indicates a strong 

excitation period. 
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The Ion Neutral Mass Spectrometer (INMS) of the Cassini spacecraft revealed a surprisingly rich ion-neutral 

chemistry in the ionosphere of Titan [1]. The modelling of such a complex chemistry, producing heavy 

hydrocarbons and nitriles ions, is challenging. It involves hundreds of ion-molecule reactions, in addition to an 

even more complex photochemical-transport model for the neutral atmosphere. The reactions are parametrized 

by rate constants and branching ratios of products, which have been measured in the laboratory, with often 

sizeable uncertainties. Validation of the ionospheric chemistry model presently relies on the comparison of 

simulated ion mass spectra (MS) with INMS data, and thus on the estimation of prediction uncertainty on the 

concentrations of ions. 

An error budget has been undertaken for the pertinent sources of uncertainty (chemical parameters, neutral 

densities...) [2]. Considering the large uncertainties and non-linear correlations associated to input parameters, 

and the non-linearities in the chemistry model, uncertainty propagation was done by Monte Carlo sampling. It 

pointed out neutral densities as a major source of uncertainty, in comparison to the chemical parameters [3]. 

Large uncertainties (about one order of magnitude)  actually characterize the simulated mass spectra, in 

particular at the higher masses (m/z > 50 amu) (Fig. 1). 

Figure 1: Simulated Ion Mass Spectrum of Titan ionosphere, with uncertainties resulting from ion-molecule 

reaction parameters and neutral species concentrations. Altitude 1200 km, daytime conditions. 

In order to identify the individual parameters responsible for these large uncertainties, we started a global 

sensitivity analysis, based on input/output correlations. Our aim is to select key reactions in need of more 

accurate (and costly) laboratory measurements. For the ionospheric chemistry model, we identified a small set 

of ion-molecule reactions and also a set of neutral species, responsible for the large uncertainties on the 

concentrations of ions.  

We then analysed the 1D photochemical model for neutral species and pointed out the major reactions 

responsible for the uncertainties in the key neutral species. A spectacular result is the hypersensitivity of the 

prediction uncertainties to the eddy profile used to model turbulent transport of neutral species. This work 

pinpoints the needs for tight constraints on the eddy diffusion coefficient (Fig. 2). 



 27 

  

Figure 2: Hypersensitivity of the photochemical model with regard to the eddy diffusion coefficient : probability 

densities of CH4 concentration profiles obtained with (a) a high homopause level (1040 km), (b) a low 

homopause level (68O km). 
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Accurate models of air flows in urban streets are an essential prerequisite to predicting the dispersion of traffic 

related pollutants. They are therefore an important component of the modelling tools available to assist in 

managing air quality in urban areas. Although much progress has been made in the development of three 

dimensional computational fluid dynamic (CFD) models of turbulent flows in urban streets, their evaluation 

with respect to relevant field and laboratory data is less common. Since the models usually include 

parameterisations of some important features, their evaluation benefits from the inclusion of sensitivity studies 

that highlight the impact of uncertain input parameters on predicted flow fields.  For example, a description of 

the velocity profile at the inlet boundary usually depends on the parametrisation of the overall surface 

“roughness” of the upwind domain. Defining this roughness parameter in variable urban street geometries is 

highly uncertain. The background wind direction is another parameter that affects predicted flow fields, and yet 

it is often measured at a significant distance from the area of interest and is therefore uncertain. As such 

parameters are often used to adapt the model to different scenarios, sensitivity analysis can be used to predict the 

effects of adjusting a particular parameter.  

 

In this work, global sensitivity studies using both High Dimensional Model Representations (HDMR) and 

Monte-Carlo sampling have been carried out on the k-ε closure urban CFD model MISKAM [1]. The scenario 

studied is that of a complex street canyon in the City of York, UK, with all geometric features of importance 

within 100m of the section of interest included in the model description [2]. The outputs of interest are the mean 

wind flow and turbulent kinetic energy (TKE), both of which affect the potential dispersion of pollutants and are 

the inputs to a coupled Lagrangian dispersion model [2].  The sensitivity of both the TKE and the mean flow 

fields to the input parameters is detailed, both within a canyon cross section, and at specific measurement points 

to aid comparison with field data. This analysis gives insight into how model parameters can influence the 

predicted outputs, as well as the relative strength of their influence. The use of these techniques for identifying 

problems in the model structure is also shown.  

 

A comparison of the Monte-Carlo sampling [3] and HDMR methods [4] was also undertaken. This shows that in 

terms of computational expense and quantity of sensitivity information, HDMR methods outperform Monte-

Carlo based techniques. Ten thousand model runs were performed using random sampling for three particular 

background wind directions to allow for accurate comparison of the two methods. Both Pearson and Spearman 

rank correlation coefficients were calculated in relation to each of the input parameters, as well as sensitivity 

indices using HDMR, thus allowing the ranking of parameters in terms of importance. The advantages of the 

HDMR method include that it can highlight the specific form of the first order response to each parameter and 

that it can quantify interactions between parameters i.e. their second order effects. It is also shown to be 

computationally less expensive for this case study, although for some examples this may be offset by the extra 

development time. Monte-Carlo sampling coupled with standard regression techniques, although simpler to 

implement, can account only for linear effects. This can however be extended to monotonically varying effects 

if a rank correlation method is used [3].  

 

Four main input parameters are addressed in this study, three of which are surface roughness lengths, 

determining the flow over a surface. The inflow roughness length is used to determine one-dimensional wind 

and turbulence profiles at the inlet boundary. The surface roughness length describes the flow over the model’s 

ground level, while the wall roughness describes flow over the building surfaces, including roofs. The wind 

direction is varied over 20 degree ranges, which is designed to simulate the uncertainties in wind direction that 

may occur in a full scale experiment. The value ranges (Table 1) chosen for each parameter are based on both 

the limitations of the model and information from previous field studies.  

 

The analysis shows that the sensitivity of the flow structures in and above the canyon to each parameter is very 

location dependant. In order to present these spatial effects, first order sensitivity indices as represented by the 

correlations shown in Table 1, are produced at every cross-sectional grid point. Thus, the influence of each 

parameter can be shown in terms of location as demonstrated for inflow roughness in Figure 1. It is also found 

that different model outputs are sensitive to different input parameters. The structure of the model can often 

directly explain these differences. Only small second order effects are found using the HDMR analysis. Hence, 
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the first order sensitivity coefficients are similar to the correlation coefficients calculated from the Monte-Carlo 

random sampling as shown in Table 1.  

 

Input parameter Pearson R2 Spearman Ranked R2 HDMR first order 

surface roughness(0.5-50cm) 0.0002 0.0007 0.0007 

wall roughness(0.5-10cm) 0.4420 0.4582 0.4507 

inflow roughness(5-50cm) 0.2808 0.3008 0.2845 

background wind direction (90±10°) 0.2059 0.2006 0.2113 

Table 1. Example of sensitivity indices for normalised TKE at an in-canyon measurement point for 

90±10° background wind direction 

 

Potential problems in the model assumptions/parametrisations were revealed by the sensitivity analysis, since 

the source of unexpected model responses could be identified. In this particular case, initial sensitivity tests 

revealed that the above roof roughness length was miss-specified in the model code. For the corrected model, 

the surface roughness was found to have the lowest overall influence on flow patterns and turbulence within the 

canyon. In the case of cross canyon flow (background wind of 90° - from the right in Figure 1) the wall and 

inflow roughness were found to be the most important parameters influencing TKE in the canyon. For along 

canyon background flow, uncertainties in the wind direction were the most important influence on in canyon 

flow features. This is not surprising since small deviations in wind direction determine whether the flow is 

directly channelled down the canyon, or is impeded by local building structures. This high sensitivity has 

implications for the specification of appropriate reference wind measurements in practical situations.  The 

analysis also tests assumptions made in the model setup. For example, ideally the model domain should be large 

enough that the inflow conditions have minimal influence on the in-canyon flow. However, the sensitivity 

studies show a significant partial variance for inflow roughness for several wind angles, indicating that the 

model domain could ideally be larger. Increasing the model domain would have implications for the 

computational expense of the calculations. 
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Figure 2. TKE sensitivity to inflow roughness for background wind of 90°, R2 cross-section. 
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The simplest Transfer Function (TF) model is a linear regression in which the dependent output variable is 

computed as an additive sum of several ‘input’ variables. The statistical identification and estimation of such 

models is straightforward and can be accomplished by ordinary multiple regression analysis. However, transfer 

functions are normally used for the modelling of linear, constant parameter, discrete or continuous-time 

dynamic systems. Such models, which are simply an alternative form of the equivalent ordinary difference and 

differential equations, can be obtained from measured input-output data using statistical methods of 

identification and estimation for TF models, such as those available in the CAPTAIN Toolbox1 for MatlabTM. 

Furthermore, TF models can be generalized in two major ways to include Time Variable Parameter (TVP) and 

State Dependent Parameter (SDP) transfer function relationships. The TVP model represents non-stationary 

systems, where the parameters can vary over time in an unknown, stochastic manner (see e.g. [1]); while the 

parameters in the SDP model are dependent on other time variable states and so can represent a wide class of  

nonlinear, stochastic  systems (see e.g. [2]). Once again, identification and estimation of such models can be 

accomplished with the help of algorithms in the CAPTAIN Toolbox. 
 

The present paper will show how this generalized class of TF model can also be utilized to improve the 

computational and statistical efficiency of sensitivity analysis and facilitate the ‘emulation’ [3] of large system 

models. It will first outline the nature of SDP models for stochastic static and dynamic systems and introduce 

methods for the non-parametric identification and parametric estimation of such models. It will then show how 

such an approach can be used to efficiently process the Monte Carlo Simulation (MCS) results obtained from 

sensitivity analysis. The paper will also show how generalized TF modelling can be used in Dominant Mode 

Analysis (DMA), a useful form of model reduction [4], and it will demonstrate how this can provide a basis for 

the synthesis of computationally efficient emulation versions of large simulation models. These various 

methodological procedures will be illustrated by two main examples. The first example will show how SDP 

estimation is able to identify and estimate an SDP model for a simulated Lorenz Strange Attractor system based 

on noisy measurements of its three state variables. The second example will show how the generalized TF 

modelling can be used to obtain an emulation version of a large macro-economic simulation model. 
 

SDP estimation is a special form of time variable parameter estimation for models formulated as a regression 

relation, in which the dependent variable is normally the output ky  of a system which is computed as an 

additive sum of  the ‘input’ variables 
i

x , ni ,...,1 , i.e., 

kpkpnkkk exvaxvaxvay  )(...)()( ,2,221,11   ),0( 2Nek       (1) 

 

Here ia  are state dependent parameters that vary over time because they are a function of the associated 

(normally measured) variable kiv , ; while ke  is assumed to be a zero mean, serially uncorrelated and normally 

distributed random noise sequence (white noise) with variance 2 . As shown in [5,6] Equation (1) forms the 

basis for the use of SDP estimation in sensitivity analysis. Here, the mathematical or computational model 

usually takes the static form: 

),...,( 1 pxxfy          (2) 

where the model parameters (input factors) ix  have a domain of variability U , linked to the uncertainty about 

their precise value. The SDP equation (1) is used to approximate (1), with the input variables representing the 

input factors and the product of the SDPs and their associated input variables providing estimates of the first 

order sensitivity functions. The advantage of using the SDP model in this manner is that the number of MCS 

realizations required to estimate the sensitivity functions is considerable reduced in relation to conventional 

methods. This static’ concept of meta-modelling to sensitivity analysis is also the basis of the Gaussian emulator 

[2] and of the Random Sample – High Dimensional Model Representation based on polynomial regression [6]. 
 

In the case of dynamic systems, the ‘input variables’ to the system will normally contain past sampled values of 

the dependent variable, as well as present and past sampled values of input variables that affect the output 

                                                 
1 See http://www.es.lancs.ac.uk/cres/captain/. 
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variable. In this form, the model is a nonlinear SDP version of the well known linear AutoRegressive eXogenous 

variable (ARX) model. This SDARX model is used in the initial non-parametric identification stage of SDP 

modelling. In the single input, single output case, the more general SDP Transfer Function (SDTF) model takes 

the form: 
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where rz  is the backward shift operator, i.e. rkk
r yyz 

   and   is introduced as a delay on the input 

variable in order to allow for any pure time delay in the system. Equation (3) can be extended straightforwardly 

to include multiple input variables and, as such, provides the basis for final parametric estimation of the SDP 

model and for the dominant mode analysis used in the full dynamical meta-modelling approach discussed here 

and exemplified in the second example. In the dynamical case, the computational model under analysis takes the 

modified form: 
 

),...,|,...,,,...,( 11 pmkknkkk xxuuyyfy           (4) 

 

The typical approach for meta-modelling and sensitivity analysis in the case of dynamical models is to repeat a 

series of static analyses on a set of grid points along the time co-ordinate. Our meta-modelling procedure, on the 

other hand, first identifies, based on DMA, a SDTF model that best approximates the features of the original 

complex dynamical model for a ‘nominal’ set of parameters values ix . Second, a MC set of realizations of the 

model (4) is generated sampling ix  from their domain U, and a corresponding MC set of SDTF approximations 

is estimated. Third, the relationship between the ix  parameters of the original model and the coefficients 

[ mn bbaa ,...,,,..., 01 ] of the SDTF approximation is mapped by applying the usual ‘static’ form techniques [2,5-

7], e.g. estimating HDMR component functions of the links  
 

[ )(11 ixga  ,… )( inn xga  , )(10 in xgb  ,…, )(1 imnm xgb  ]     (5) 
 

The second step of our procedure also includes validation checks, whereby the structure of the SDTF model 

identified on the ‘nominal’ set of parameters of (4), is checked to hold also for all the MC realizations. Such a 

validation step might include an iterative DMA and identification procedure in order to select the SDTF 

structure that best fits the original model in the entire domain U (or at least in its largest part). In the case of 

stochastic models (i.e. ku  are stochastic processes), validation also checks the effectiveness of the identified 

SDTF to fit random realisation of the stochastic dynamical system. 
 

This three-step procedure defines a full dynamic meta-model, whereby for every parameter set of the original 

model a corresponding set of coefficients for the SDTF is derived, that produce a computationally efficient and 

operationally equivalent dynamic simulation model that can replace the original large simulation model. This 

approach has the advantage that it is not based on a series of static analyses on grid points: rather, the SDTF 

meta-model mimics the relevant dynamical features of the original model, allowing for a full dynamic 

approximation. 
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Many problems in physics and numerical analysis are concerned with high dimensional integrals. 

While the classical grid methods are very efficient for low dimensional integrands, they become 

computationally impractical when the number of dimensions n increases as the number of required integrand 

evaluations grows exponentially. This effect is known as ”the curse of dimensionality”. In contrast, the 

convergence rate of Monte Carlo (MC) integration methods dos not depend on the number of dimensions n. 

However, the rate of convergence O(1/N-1/2), where N is the number of sampled points, attained by MC is rather 

low. A higher rate of convergence can be obtained by using deterministic uniformly distributed sequences also 

known as low-discrepancy sequences (LDS) instead of pseudo-random numbers. Methods based on the usage of 

such sequences are known as Quasi Monte Carlo (QMC) methods. Asymptotically, QMC can provide the rate of 

convergence O(1/N). For sufficiently large N, QMC should always outperform MC. However, in practice such 

sample sizes quite often are infeasible, especially when high dimensional problems are concerned. Some 

numerical experiments demonstrated that the advantages of QMC can disappear for high-dimensional problems. 

There were claims that the degradation in performance of QMC occurs at n > 12 [1]. At the same time there are 

known high-dimensional problems for which QMC significantly outperforms MC.  

Global sensitivity analysis (SA) offers a general practical way to predict the efficiency of QMC 

algorithms. Using the Sobol’ method of global sensitivity indices the classification of some important classes of 

integrable functions is developed [2]. Functions with respect to their dependence on the input variables can be 

divided into three categories: functions with not equally important variables ( type A ), functions with equally 

important variables and with dominant low order terms ( type B ) and functions with equally important variables 

and with dominant interaction terms ( type C ). For functions of type A and B, QMC is even in the high 

dimensional case superior to MC while for functions of type C, QMC looses its advantage over MC because of 

the importance of higher-order terms in the corresponding ANOVA decomposition. The results of numerical 

tests verify the prediction of the suggested classification. 

The technique for prediction the efficiency of QMC methods was extended for the case of Wiener path 

integrals. In [2] it was applied for analysis the differences in performances of two well-known approximations 

of a test path integral. The standard and the Brownian discretization schemes used in MC option pricing were 

compared in [3]. Global SA reveals that the variance of the samples generated for the Brownian path slowly 

decreases with time step index for the standard discretisation for the case of Asian call options. The higher order 

interactions in the ANOVA decomposition of payoff functions are very important. Therefore, the effective 

dimensions for standard discretization is close to the real dimension. Although the standard discretisation with 

QMC sampling is superior to MC, the convergence rate of the QMC method is much lower than that of the 

Brownian bridge discretisation and it decreases as dimensionality grows.  

The Brownian bridge discretisation of the Brownian path results in significant improvement of the 

accuracy of QMC especially when the number of time steps n is large. For the Brownian bridge discretisation 

the sensitivity indices of the first few variables are much larger than those of the subsequent variables. 

Application of the Brownian bridge discretization greatly reduces the effective dimension and consequently 

increases the efficiency of QMC. Its efficiency practically does not depend on the problem dimensionality.  

 

A new approach for parameter estimation within the framework of optimal experimental design (OED) 

is developed. OED allows the identification of a set of experiments with conditions that deliver measurement 

data the most sensitive to the unknown parameters. One of the common ways to design experiments is to use 

scalar functions of the Fisher information matrix (FIM) evaluated at the nominal values of the parameters. This 

information matrix is based on the linear sensitivity coefficients of the response variables. The results of a FIM 

based OED depend on the nominal values used for the parameters. Moreover, preliminary experiments and 

model calibration tests need to be carried out in order to obtain a first guess for the parameter values and a 

slowly converging iterative scheme is required [4]. These linear methods are not sufficient for dealing with 

complex OED problems, especially those in which nonlinear interactions between parameters are present. 

These limitations can be overcome by the application of global sensitivity indices and defining the 

Global Fisher Information Matrix (GFIM ) as 



 33 

1 1

ˆ( , )
N N

TG G
r s

r s

FIM p x Q Q
 

 ,     

where matrix 
G

rQ  has a form 

1 2

1 2

1 2

ˆ ˆ ˆ1 1 1

ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

L

L

L

r r r

p p p

r r r

p p pG

r

r r r

p N p N p N

S t S t S t

S t S t S t
Q

S t S t S t

 
 
 

  
 
 
 

.    

Here ˆ n( )
l

r

pS t  is the Sobol’ sensitivity index for parameter l
p  of the r-th response variable at nt -th moment of 

time. Once GFIM is defined the maximization of the determinant 

 GSIMJOED det .      

leads to an optimal vector of input variables. This approach was applied to some cases studies in [5]. The results 

demonstrated methods ability to significantly reduce the required experimental work and illustrated the 

effectiveness of the global SA techniques for the design of reliable dynamic experiments. 
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In this paper we show an extended use of the Sobol’ estimator to be used with Monte Carlo (MC) samples that 

do not follow the standard Sobol’ design for computing sensitivity indices [1]. Sobol’ offered a Monte Carlo 

strategy to compute variance-based indices of any order that is based on a Monte Carlo exploration of the input 

space. To make an example, to estimate )]|([ ii XYEVV  , the following algorithm is used 
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where N  is the sample size of a MC simulation, k  the number of independent factors, and the superscript ba,  

stand to indicate that different independent input MC matrices have been used:  
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This applies also for sets of factors  
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where IX  denotes a group of factors indexed by kggii  11 ),...(I . Using the standard Sobol’ procedure, 

estimating all first order effect requires N(k+1) model evaluations, while it takes )12( kN  runs to estimate the 

full variance decomposition. When a replicated Latin-hypercube design (rLHS) is used, only two replicas are 

sufficient for the entire set of first order effects, thus reducing the cost from N(k+1) to 2N model evaluations, 

whatever the number input factors.  

 

Here we propose to extend the idea of rLHS in two directions. The first is to exploit low discrepancy sampling 

techniques, like Sobol’ quasi-random sequences [2]. The second proposes the following simplified form of the 

estimators (1-2): 
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 is the row-index of the re-sample matrix B, where the IX  co-ordinates 

have the smallest Euclidean distance w.r.t. the IX  co-ordinates in the j-th row of the sample matrix A. In this 

way, one can think of applying a generic sample design of dimension 2N and estimate main effects as well as 

higher order interaction effects with the approximated estimator (3). In the case of Sobol’ sequences, this is done 

by generating a sample of dimension N and k2  columns and use the first k columns for the matrix A and the 

remaining ones for matrix B. It is worthwhile to note that, using the approximated estimator (3) one has to 

implicitly rely on a smoothness assumption of the mapping )(XfY  , whereby the original Sobol’ procedure 

does not, i.e. the latter provides a robust and unbiased estimates of sensitivity indices regardless to any 

hypothesis on f, but square-integrability. 

 

Convergence properties of the proposed estimator are shown by means of Monte Carlo experiments. 

Comparisons with other classical approaches are also considered.  
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In this presentation, we propose the use of the Partial Least Squares (PLS) regression in order to more 

effectively carry out the Sensitivity Analysis (SA). This regression method is very well-known for data analysis 

in many different scientific fields (chemometrics, biometrics, etc). It was proposed by [1] and is explained in 

detail in [2] and [3]. Two advantages are particularly relevant for conducting a SA of a model ouput. These two 

advantages are: i) the very efficient way to manage the stochastic and structural dependences – because the 

partial covariances are taken into account – between the inputs; ii) the possibility of having a smaller number of 

simulations (because no matrix inversion is needed for estimating the SA indexes) than the number of inputs, 

which is extremely useful if simulations are very time-consuming. More information on the principle and 

properties of PLS regression will be given in the lecture and in a subsequent paper. We only provide the main 

steps of our methodology below.  

The general methodology we propose is composed of four steps: 

(a) N Monte Carlo simulations of the output are generated via a computer model, which leads to a simulation 

matrix S of N rows and p columns (the p inputs). It should be observed that the correlation structure between the 

p inputs is obtained by application of the method given in [4]. 

(b) A full quadratic polynomial model (p linear effects, p quadratic effects, p(p-1)/2 first-order interactions 

between inputs, and one intercept) is built from the p inputs, leading to a matrix M of N rows and k columns. 

(c) A particular method of stepwise PLS regression – the BQ method described in [5] – is used for selecting 

the significant and significant expanded inputs. Even if the value of k is very large (2000, for example), the 

procedure works well and quite rapidly. 

(d) A final PLS regression model is estimated (by means of SIMCA software Version 9.0, Umetrics AB, 

Sweden) with the inputs selected in step (c). If its R2 is large enough (typically > 80%), we can consider that 

this final model is valid and hence provides estimated centred and scaled PLS coefficients, which can be seen as 

SA indexes (see Fig. 1 of the following example). Eventually, the adequate normalisation can be applied to these 

indexes for obtaining percentages. 

Following are some results about a successful application to a real SA problem. This application is 

concerned with the exposure to the mycotoxin Ochratoxin-A (OTA) in food, for the population of French 

children. An elementary exposure to OTA is defined by the product of a food consumption (normalised by the 

individual weight) by the contamination level of this food. A global exposure is the sum of several (eight here) 

elementary exposures. The exposure distribution was estimated in [6], as well as its 95th quantile for estimating 

risk assessment exposure to OTA in food. A first SA was reported in [7] and at the SAMO 2001 Conference. 

The second SA we propose here is easier to achieve thanks to the PLS regression, and especially, to the fact that 

the whole variation domain of the 32 inputs can be taken into account, to the contrary of the study in [7] where 

Fig. 6 clearly shows the ellipsoidal domain of an input couple. The output we are interested in is thus the 95 th 

quantile relative to the parameters of the probability density functions (pdf, the inputs of the SA) of the 

consumption and contamination distributions of the eight types of food. Indeed, these parameters are not certain 

and their potential ranges were estimated in [7] from real consumption and contamination data. Therefore, it is 

crucial to quantify the sensitivity of this high quantile to the variation of these inputs. In this case, we have p = 

32 and k = 561. One trial was achieved with N = 318 (note that N < k), and the second with N = 12,698. The SA 

indexes are very similar for these values of N. However, we only show the significant SA indexes for N = 

12,698 (100xR2 = 96%) in Fig.1. 

Some brief comments can be made here. First of all, only six SA indexes are significantly different from 

zero among the 560 indexes; the word “significantly” has a particular meaning in the PLS that will be explained 

in the lecture and the subsequent paper. Secondly, we observe that the type of food “CEREALS” (see a detailed 

definition of this word in [6]) is the only type of food that is involved in the SA and, moreover, the SA indexes 

relative to the parameters of the contamination distributions are preponderant. Thus, it is of particular 

importance to have accurate values for these parameters and, consequently, we need to improve the collecting 

process of contamination data for “CEREALS”.  
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Fig. 1: SA indexes for the 95th quantile with their bootstrap type confidence intervals; inputs (all relative to 

“CEREALS”) are: cecor = the shape parameter of the consumption Gamma pdf, cecol = the scale parameter of 

the consumption Gamma pdf, cetcr = the shape parameter of the contamination Gamma pdf, cetcl = the scale 

parameter of the contamination Gamma pdf, and quadratic CETCR and CETCL terms. 
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A considerable amount of information is lost when the mean and variance of a dependent variable is calculated 

from a random sample. Considering a general model f with k independent input factors Y = f (X1,X2, · · ·Xk), 

when the appropriate sampling strategy is adopted, the sophisticated variance-based methods are very efficient 

in inferring how the variance of the output Y can be quantitatively apportioned to the different independent 

variables. However, the multidimensional averaging characterizing global sensitivity analysis methods provide 

only part of the information available from the mapping between the input factors and the response of interest. 

In fact, for a given input factor Xj, it is not possible to assess how a specific quantile of this variable contributes 

or fails to contribute to the mean and variance of the Y. In this paper the contribution of Xj is also decomposed 

across its range and provides useful information for a number of settings related to Global Sensitivity Analysis 

(factor mapping, factor prioritization and factor fixing). 

 

In the radioactive waste management framework, Sinclair [1] investigated the way infinitesimal changes to the 

probability density function (PDF) of an input factor Xj can alter overall features of performance (mean and 

variance of Y). The marginal dependence of E(Y) on the various input factors was employed and portrayed 

graphically. Nevertheless, Sinclair considered his ‘sensitivity plot’, as he called it, as a useful graphic tool for 

estimating sensitivity ‘by eye’ [1]. This study has three objectives: The first one is to extend the idea behind the 

contribution to the sample mean plot to the variance, developing also the contribution to the sample variance 

plot, the second one is to develop statistical tests for both plots, the third one is to extend Sinclair’s qualitative 

assessment of parameter sensitivities to quantitative sensitivity measures for the mean and variance of the model 

response Y. 

 

Let us consider that a Monte Carlo sample S of size N is generated for the inputs and that the corresponding 

model response Y is also estimated. Let us also consider that the sampling technique used doesn’t introduce any 

bias, as for example random sampling or proportional stratified sampling. In order to build both plots for a given 

input variable, let us say X1, and the response Y, firstly we sort the realisations of X1, generating the series of 
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which are further normalised being divided by the sample mean and the sample variance 

respectively. Then, they are plotted versus the cumulative distribution function of X1. So, the 

contribution to the sample mean plot is the plot of the normalised values mi versus FX1(x1) 

and the contribution to the variance plot is the plot of the normalised values vi versus FX1(x1). 

 

Plotting FX1(x1) in the x axis means that equal lengths represent approximately regions of 

equal probability of the input variable. The more the plot deviates from the diagonal in a 

given region, the more that region of the input variable contributes to the sample mean or the 

sample variance. In fact, non-important input variables produce plots close to the diagonal, 

since large and small output values can be equally found in any of their regions.  

 

These plots provide a qualitative view of the importance of the input variable considered, 

nevertheless, it is important to be able to measure how important, how statistically 

significant, is its departure from the diagonal. This task needs the help of a statistical test. 
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In order to set up a test we need to define a null hypothesis and a measure of discrepancy with the null 

hypothesis. The null hypotheis is the ‘non-importance’ of the input variable considered, and we will interpret 

‘non-importance’ in statistical terms as a random assignation of output values to the inputs. So, if the output 

values seem to be randomly assigned to the values of a given input variable, we will consider that the different 

parts of that input variable contribute approximately equally to the output variable sample mean, so that it will 

be considered as a non-important effect on the output variable. 

 

As a measure of discrepancy with the null hypothesis we consider the maximum distance between the 

contribution to the sample mean plot and the diagonal (same for the contribution to the sample variance). This 

measure of discrepancy with the null hypothesis is a reasonable one since lack of random association between 

inputs and outputs will produce departures from the diagonal. 

 

The next step is the computation of the distribution of the measure of discrepancy under the null hypothesis and 

the design of the corresponding decision rule. With this purpose, a permutation test [2] has been set up. This test 

is specific for each output variable given that the distribution under the null hypothesis depends on its values. 

So, we proceed as follows: we generate a large number of permutations of the set of sampled output variable 

values, say 104, then we produce a plot for each random permutation, so that we get a ‘cloud’ of plots that could 

be obtained under random conditions. For each plot the maximum distance (absolute value) between the curve 

and the diagonal is computed. Using order statistics, we estimate the different quantiles of the random variable 

‘maximum distance between the curve and the diagonal’. In order to perform a test, we choose a test 

significance level and select the appropriate value of the maximum distances above which we reject the null 

hypothesis. Figure 1 shows an example of contribution to the mean plots. The red lines provide the 99% band. 

Under random conditions only 1% of the curves generated have at least one point outside the band contained 

within the two red lines. W and V1 are quite relevant parameters while T and K are not. While this conclusion 

cannot be inferred from the classic scatter plots visualization, the proposed representation gives an added value 

with respect to the sensitivity assessment. The value of the statistics ‘maximum distance between the curve and 

the diagonal’ can approximately be considered as a measure of importance of a given parameter. 

 

 
Figure 1.- Contribution to the mean plot for four input variables in a radioactive waste management model. The 

null hypothesis is rejected for parameters whose curves lie out of the 99% band, identifying them as important 

parameters. 
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Random Sampling-High Dimensional Model Representation (RS-HDMR) is a practical approach to HDMR that 

can provide efficient global sensitivity analysis of complex nonlinear systems with independent or correlated 

probability density functions of inputs. HDMR expresses the model output f(x) as a finite hierarchical correlated 

function expansion in terms of the input variables (x1, x2, … , xn): 

       
ij
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ii xxfxffxf ,0 . The HDMR component functions are optimally constructed 

from a set of generated/measured data for each specific function f(x). The individual RS-HDMR component 

functions also have a direct statistical correlation interpretation, which permits the model output variance, σ2, in 

a desired input domain to be decomposed into its input contributions (   2
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covariances of fi(xi), fij(xi; xj ), … with f(x), respectively. The global sensitivity indexes, Si, Sij, … are defined as 
22 / i , 22 / ij , ….The magnitudes of Si, Sij, … may be used to quantitatively identify the important inputs 

and input pairs, triples, etc. After deducing the component functions, the HDMR expansion can be used to 

explore the input  output relationships of the particular systems. To reduce sampling effort, the RS-HDMR 

component functions are approximately represented by weighted optimal orthonormal polynomial expansions. 

The orthonormal polynomial expansion coefficients of RS-HDMR are sequentially determined by least-squares 

regression. The probability density function of inputs is involved only implicitly through sampling, and the 

inputs can have an arbitrary independent or correlated probability density function. This feature is especially 

beneficial for real systems whose input probability density functions are often correlated and unknown. RS-

HDMR technique will be illustrated with several examples. 
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 The use of computational modelling as a design or strategic planning tool is increasing within 

engineering and environmental applications. Examples include the design of efficient combustion devices, the 

optimisation of chemical process plant and the prediction of the response of pollution levels to changes in 

emissions. For such applications, models often require the coupling of a range of complex processes including 

chemical kinetic interactions, turbulent fluid flow and molecular diffusion. The evaluation of such models is 

crucial to understanding the confidence that can be placed in their predictions, as well as providing vital 

information for model improvement. A key model subcomponent in many applications is the chemical 

mechanism employed. The rapid improvement in computational power in the preceding decades has facilitated 

the use of substantially more detailed kinetics than the single step approximations used in early reactive flow 

applications. Furthermore, it has become apparent that the inclusion of detailed kinetic processes is critical to 

the successful prediction of a range of important phenomena. In addition, the development of automatic 

procedures for chemical mechanism generation [1,2], means that kinetic mechanisms are becoming available in 

ever increasing detail. Examples include the Master Chemical Mechanism (MCM) used for the prediction of 

tropospheric gas phase chemistry and containing up to 4500 species and over 12,000 reactions [1], and 

mechanisms describing the oxidation of a range of fuels as generated by the EXGAS code [2].  

 Despite the detail available, the use of such comprehensive schemes in complex reactive flow models 

is not without problems. The sheer size of such schemes often prohibits their use in models describing complex 

flow phenomena such as 3 dimensional simulations of turbulent reactive flow, even using the massively parallel 

computers available today. However, the schemes are usually developed for general use and therefore may 

contain a significant number of species and reaction steps that are not required to model particular sets of 

conditions. In addition, many of the reaction steps and thermochemical parameters in such schemes have not 

been directly measured or modelled using ab initio techniques, but have been estimated using structural 

additivity relationships, making the data highly uncertain in some cases. The evaluation of the predictive 

uncertainty that results is therefore crucial. Making use of such comprehensive schemes for solving practical 

problems therefore requires developments in two areas: i) methods for the identification of redundant processes 

that can be removed from the scheme without substantially affecting the predictions of the outputs of interest ii) 

identifying those of the remaining parameter that drive the output uncertainty of the model and therefore require 

improved categorisation. Both steps fall within the realm of sensitivity and uncertainty analysis.  

 The identification of redundant species and reactions can be addressed by the use of local sensitivity 

coefficients.  Often, the numbers of species can be significantly reduced for a given application, with only 

limited numbers of full model runs required to evaluate the sensitivity coefficients. The use of sensitivity 

analysis for model reduction has been the subject of several reviews [3,4]. The reduction of the model is a useful 

preliminary step for the assessment of model uncertainty, since the global methods required to achieve this 

usually necessitate a substantial number of model runs. Following the removal of redundant steps from the 

mechanism, the predictive uncertainty from the reduced scheme can be assessed in a more computationally 

efficient way. Even so, reduced chemical mechanisms remain a challenge for global methods, since the 

uncertain input data can include both reaction rate coefficients for each reaction, as well as thermochemical data 

for each species. The number of input parameters can therefore be large, even following model reduction. For 

automatically generated mechanisms, the uncertainty ranges for many parameters can also be large, leading to 

the requirement for global rather than local methods. This complexity can be dealt with in a number of ways. 

Screening methods such as the Morris method [5] and its variations can be employed to first identify 

unimportant parameters. A subsequent full global analysis can then be performed using a range of sampling 

methods for a reduced number of parameters. Alternatively, the use of High Dimensional Model Representation 

(HDMR) based methods [6,7] can be used without the need for prior screening, since they can be coupled with 

optimisation techniques that automatically exclude unimportant component functions (see paper by Ziehn and 

Tomlin). The application of these approaches to a range of case studies in chemical kinetics will be discussed.   

 

Case Study Examples 

 

 Isolation of chemical kinetics from other aspects of the fluid flow assists in the evaluation of chemical 

mechanisms. This usually means the design of experiments which use simple geometries where the reactor is 

well mixed or exhibits simple flow characteristics such as laminar flow. In atmospheric studies, the well mixed 

smog chamber is often used for isolating kinetic processes. In combustion, similar well stirred reactor studies 
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are available as well as one dimensional laminar flames. More recently, the use of experiments performed in 

micro-gravity conditions has enhanced the pool of data available, since under such conditions the complex 

mixing caused by convection is removed from the problem. Such experiments mean that the physical part of the 

problem is substantially simplified so that sufficient chemical detail can be included in the computational model 

for the evaluation of detailed mechanisms. The number of parameters related to physical processes such as 

diffusion is also reduced.  Examples are chosen here to highlight particular issues of relevance to nonlinear 

kinetics. These include i) the prediction of auto-ignition delay for the low temperature oxidation of propane in a 

well stirred reactor. The implications of the highlighted uncertainties for predictions of ignition delays obtained 

under microgravity will be discussed. ii) the prediction of auto-ignition delay for the combustion of CO + H2 

mixtures at high pressures, iii) the prediction of NO emissions from a premixed laminar methane air flame with 

trace sulphur and nitrogen compounds.  

For each example, it is demonstrated that only a few parameters contribute substantially to the output 

variance of the kinetic model, despite the large numbers of species and reactions present in the schemes studied 

and the large uncertainty ranges adopted in many cases. Screening methods are shown to successfully identify 

the main parameters of importance which can be further studied using sampling based methods. On the other 

hand, HDMR methods are shown to provide an automatic way of identifying unimportant parameters within the 

analysis, thus removing the necessity to employ screening methods, even for problems with a high dimensional 

input space. HDMR also provides an automatic way of producing an importance ranking for the parameters, 

including both first and higher order effects. Substantial nonlinearities are found in the output response of the 

models, which can be highlighted by the HDMR component functions.  

It is shown that identification of the parameters driving uncertainties from the kinetic models can 

inform the need for new theoretical studies of specific reaction rate or thermochemical data.  For the example of 

CO + H2 auto-ignition delays,  the rate constant assigned to the HO2+CO reaction was found to be particularly 

significant and was subsequently reassessed using ab initio techniques [8] as a result of the uncertainty analysis. 

The adoption of the new rate is shown to improve the agreement with the high pressure ignition delay studies. 

For the propane study, the original reaction scheme appeared to exhibit too high a reactivity when compared to 

experimental results. Uncertainties in thermochemical data (heats of formation) were seen to have a significant 

effect on the prediction of ignition delays. Tests suggest that the adjustment of a few key parameters within their 

uncertainty ranges would be enough to substantially improve the agreement of the model with both terrestrial 

and micro-gravity experiments. Optimisation is problematic however, since a large number of parameter 

combinations are capable of giving overlap with the experimental values. This suggests the requirement for 

further theoretical studies of the key species identified. For the laminar flame, under conditions of low fuel to 

oxygen ratio, no overlap exists with the experimental data, despite large uncertainty ranges in input data. 

Suggestions for structural improvements to the model are therefore required in this case.  
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One-Class Support Vector Machine (OC-SVM) is a most popular method in outlier detection or anomaly 

detection. It is based on the kernel trick and standard SVM procedures, and, in a quadratic programming 

formulation, uses a trade-off parameter that defines the ratio between number of samples in data class and that 

of outlier class, i.e., class of support vectors. The sensitivity of the trade-off parameter involved in the OC-SVM 

is investigated with respect to noisy mislabelled data, and some original modification of the method is proposed. 

 

1. Introduction 

In binary classification (e.g., operating or failed), support vector machines (SVMs) have attracted much 

attention recently because of their excellent quality in various real-world applications [1]. Utilizing the kernel 

trick that is a method of converting a linear classification algorithm into a non-linear one by replacing a dot 

product in high dimensional feature space with kernels, SVM can find the maximum-margin hyperplane that 

separates two clouds of data points at equally located distance. SVM is reputed to achieve high performance, not 

suffering from the curse of dimensionality even when the number of training samples is small compared to the 

feature vector dimensionality. The great advantage of SVM is that the algorithm often does not suffer from 

overfitting and enhance a generalization capability. In order to use kernels as dot product, note that the kernel 

function must be symmetric and positive semi-definite. 

A powerful extension of SVM to one-class problems is referred to as One-Class SVM (OC-SVM) [2]. Using 

an appropriate kernel function, OC-SVM first maps the data points into a high dimensional feature space, and 

then finds the hyperplane that separates, with maximum margin, the feature vectors from the origin of the 

transformed space. The kernel most commonly used in SVM and OC-SVM is the Gaussian radial basis function. 

The OC-SVM interprets the origin of the transformed feature space as the second class and feature vectors that 

are classified as belonging to the second class are regarded as outliers or anomalies. In the risk management 

applications, OC-SVM is typically used for classification of anomalies and malfunctions occurring in nuclear 

components and systems from measured operational data [3]. 

In the quadratic programming formulation of OC-SVM, there is a parameter that controls a trade-off 

between maximizing the distance of the hyperplane from the origin, and containing most of the training samples 

in the domain created by the hyperplane. The paper explores sensitivity investigations of this trade-off 

parameter involved in the OC-SVM against noisy mislabelled data since the parameter significantly influences 

the quality of classification. In addition, we propose some original modification of the method based on the 

sensitivity experiments. 

 

2. Sensitivity Analysis in OC-SVM 

Let x m
R be a measurement vector. Using the Gaussian radial basis function as kernel 
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where   denotes the standard deviation, OC-SVM can be formulated as the following quadratic programming 
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where   is the appropriate mapping function, w and   denote the weight vector and threshold level, 

respectively,  (0,1) is the trade-off parameter, and 
i  are slack variables that penalize the objective function 

with allowing some of the feature vectors to be located in between the origin and desired hyperplane. Recall that 

the parameter   theoretically defines the ratio between number of samples in data class and that of outlier class, 

i.e., class of support vectors. 

In order to perform the anomaly detection, a dataset of known anomalies is used to train OC-SVM with the 

proper label, say, +1. When all the training data are correctly labelled, the resulting model can recognize 
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whether the test data belongs to the known or unknown anomaly class. However, if the class label is noisy, i.e., 

some data are mislabelled, it often becomes crucial to discriminate true (failed states) and false anomalies since 

there is a number of possible situations with false-positive and false-negative cases. For system reliability 

evaluation, the correctly classified failed states provide most valuable information. In the present study, the 

sensitivity is defined by the percentage of correctly classified anomalous events belonging to the known and/or 

unknown anomaly class with varying a value of the trade-off parameter  . 

 

3. Sensitivity Experiments 

For experimental investigations, we take Spam E-mail Database from UCI Repository of machine learning 

databases [4]. Only preliminary results are presented here with appropriate pre-processing of Spam E-mail 

Database, where OC-SVM is used to eliminate possible mislabelled data. In Fig. 1, we plot the classification 

accuracy against the level of mislabel with varying a value of  involved in the OC-SVM used as a pre-

processor. 

 

 
 

Fig. 1 depicts that there may be some optimal value of   against the level of anomaly or percentage of 

mislabelled data. Although it is too early to draw any definite conclusions, OC-SVM may be useful for the one 

class anomaly recognition tasks. But, at the same time, preliminary results warn us against its uncritical use. In 

addition, some original modification of the method is proposed based on conceptual and experimental 

investigation details of which will be presented at the conference. 
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The need to estimate and communicate uncertainty in predictions of flood extent and estimates of flood risk is 

now widely appreciated [1]. Decision-makers can legitimately expect technical specialists to provide and justify 

uncertainty estimates so that they can make risk-based decisions that account for uncertainty. In this paper we 

are concerned with the problem of uncertainty analysis in the use of (usually quite complex) numerical models 

to predict flooding. Current practice in flood modelling is typically based upon rather ad hoc procedures for 

model calibration based around tuning of model parameters until the model predictions give reasonable 

correspondence to some observed dataset, whilst also remaining within ‘plausible’ ranges of the parameter 

values, which are not directly measurable in nature. Data with which to compare model predictions are usually 

scarce and may be of questionable accuracy. A less deterministic approach has been proposed by Beven [2], 

which makes use of ‘informal’ likelihood functions in order to generate uncertainty estimates for model 

predictions, an approach that has been criticised for being incoherent in a formal sense [3].  

 

Kennedy and O'Hagan [4] (hereafter KOH2001) have proposed a Bayesian approach, based upon the following 

characterisation of the calibration problem:  
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A computer model enacts a deterministic function of input variables x and a vector of calibration parameters . 

However, the computer model will tend to be computationally expensive, so it will only be feasible to do a 

limited number of model runs. It is therefore replaced by a Gaussian process (xi, ), scaled as necessary by , 

that can emulate the computer model response on the basis of a set of training runs. It is acknowledged that even 

with the best possible values of the calibration parameters   the computer model is not a perfect representation 

of reality. It is separated from reality by a model inadequacy function (xi), which is also taken to be a Gaussian 

process. The ‘true’ process of interest is not observable. Instead we observe zi which is the true process 

contaminated by some observation error ei. Full details of the KOH2001 are described in [4] and [5]. The 

methodology has now been implemented in the R programming language in a package called BACCO. The R 

routines are described by Hankin [6], can be freely downloaded from http://cran.r-project.org/ and have already 

been successfully applied in other applications [7]. 

 
Figure 1 DEM of the Thames case study site with the SAR image of the flood outline super-imposed 

In this paper we apply BACCO to the calibration of a computer simulation of flooding on a reach of the River 

http://cran.r-project.org/


 45 

Thames (UK) for which a Synthetic Aperture Radar image of the extent of flooding was available for model 

calibration [8] (Figure 1). The flood model is LISFLOOD-FP, a raster-based inundation model specifically 

developed to take advantage of high resolution digital elevation models (DEM) [9]. Channel flow is handled 

using a one-dimensional approach that is capable of capturing the downstream propagation of a flood wave and 

the response of flow to free surface slope. Floodplain flows are similarly described in terms of continuity and 

momentum equations, discretized over a grid of square cells, which allows the model to represent 2-D dynamic 

flow fields on the floodplain. The model calibration parameters are the Manning friction coefficients for the 

river channel and floodplain, but previous research has shown rather small sensitivity to the floodplain friction 

coefficient [10], so here we deal with just one calibration parameter, the river channel friction coefficient nc.  

 

Recent attempts have been made to undertake Bayesian calibration with pixelated spatial data using a likelihood 

function for binary data [11]. In this paper we re-project the spatial flood outline data onto the DEM in order to 

generate observations of flood elevations at either side of the floodplain. The procedure introduces, and to some 

extent amplifies, errors due to inaccuracies in the satellite observation and DEM, but results in the calibration 

process being based upon water surface elevation, which is a more primitive variable in flood modelling than 

flood outline. The errors can be accounted for within the framework of KOH2001.  

 

The analysis takes place in two steps:  

1. calibration, in which the observations are used to generate posterior distributions for nc, the model 

inadequacy (xi) and the observation error ei. 

2. calibrated prediction, in which the posterior distributions for nc, the model inadequacy (xi) and the 

observation error ei are combined with a distribution for the discharge Q in the river to generate a 

probabilistic prediction of flood depth at points in the floodplain, which incorporates all sources of 

uncertainty.  

As well as providing a sound approach to calibrated prediction, the process provides new insights into the 

sensitivity of the model simulations to the distribution of the calibration parameters and the extent to which 

model inadequacy can be successfully identified from a single spatial observation.  
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In recent years, the interest in and the use of indicators and indexes are rapidly increasing. Their usefulness for 

policymakers and communication purposes is a key advantage. Trends can be identified, problems predicted, 

policy targets and priorities set, the impact of measures assessed, attention achieved, … [1,2]. In domains like 

economy (the human development index), technology (the technology achievement index) and sustainability 

(the environmental sustainability index) the aggregation of indicators in one index is common [3].  

 

In this research we focus on the road safety domain which is currently showing much interest in the use of 

indicators. For the most influencing road safety risk factors, indicators are presently being developed and data 

collected on the European level [4,5]. Although countries are often compared on their level of road safety by 

means of the number of traffic deaths per million inhabitants, the development of a road safety performance 

index will provide valuable insights. There are a number of disadvantages linked to accident data, like for 

example the lack of uniformity in definitions and the problem of under-registration [6]. However, the most 

important drawback is that knowledge of the number of accidents and casualties in a country is insufficient to 

understand the processes that lead to these accidents. If one wants to enhance the road safety level in a country, 

a set of measures has to be identified, able to tackle the real problem.  

 

Road safety indicators can help in this respect. Based on a set of carefully selected indicators, the safety 

conditions can be reflected, the impact of safety interventions can be measured and the safety performance of 

different countries can be compared [5]. Not only will an insight be gained into the domains that need additional 

efforts from policymakers, the aggregation of useful information into one road safety index will be a valuable 

tool for the road safety domain. A sound methodology for constructing a road safety performance index is 

however prerequisite for its use. To this end, a composite indicator methodology has to be elaborated.   

 

In the past, limited attention has been paid to the construction of a road safety index, and we believe that a 

methodologically valid composite indicator approach is a new, challenging and necessary matter in road safety. 

In order to develop an acceptable index, the subjective choices involved in the process of developing a road 

safety index need to be justified and their impact on the end result quantified. As there is no agreement or a 

priori knowledge on the best or ideal method to be used in the steps defined in [1], several possible methods 

need to be tested. Sensitivity and uncertainty analysis is a requirement for composite indicators. The end result – 

for example the ranking of countries based on their road safety index score – can be heavily influenced by the 

choices made in the index construction process. As stated in [7] the iterative use of uncertainty and sensitivity 

analysis contributes to the well-structuring of the composite indicators, provides information concerning the 

robustness of the countries’ ranking and identifies ways to reduce the uncertainty in the ranking for a better 

monitoring and policy.  

 

In the study at hand, various methodological aspects used in other composite indicator studies [1,3] are 

investigated and adapted to the specific context of road safety. We will illustrate some methodological topics on 

a dataset consisting of 7 road safety indicators (related to the domain of alcohol, speed, protective systems, 

visibility, vehicle, infrastructure and trauma management) and 18 countries. In the literature [8], these 7 domains 

are generally agreed to be very important road safety risk factors. For now, for each domain only one indicator 

was defined based on policy relevance, clarity and data availability [2].  

 

As part of the development of a road safety index, we will study the impact of the weighting method, expert 

selection and indicator selection on the average shift in rank of the 18 countries in our dataset. More 

specifically, we will test two commonly used weighting methods [3] both based on expert opinions, namely the 

Analytic Hierarchy Process (AHP) and Budget Allocation (BA). The results of comparisons in pairs of the road 

safety indicators as well as the allocation of a budget over the indicator set were obtained from 9 road safety 

experts from different European countries. The average indicator weights over the experts are often used. 

However, we will assess the impact of selecting the weights from one particular expert. In addition, the change 

in rank will be studied in case one of the seven indicators is no longer included in the road safety index. The 

result of the analysis will indicate how robust the ranking is, which of these methodological choices has the 

largest impact on average rank shift and which input factor needs special effort in order to reduce the output 

variance. It can also be shown which countries are favoured under a particular set of assumptions.  
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The output variable of interest is the average change in the country rankings for all possible scenarios. Due to 

the specific nature of this composite indicator we will compare the road safety ranking against the reference 

ranking based on the number of traffic deaths per million inhabitants.  

 

First, a probability distribution function is assigned to each input factor from which values are drawn for each 

sample. Multiple evaluations of the model with randomly selected input factors will be performed, considering 

simultaneously all sources of uncertainty. For non-linear models (which is the case here) variance-based 

techniques for sensitivity analysis are the most appropriate [9]. These techniques are model independent (thus 

suitable for non-linear and non-additive models), they capture interaction effects apart from the fractional 

contribution of input factor xi to the variance of the model output y, and they explore the whole range of 

variation of each factor. 

 

The largest shift in country ranking occurs when the weights of expert 6 from the budget allocation method are 

used and the infrastructure indicator is no longer part of the dataset. In addition, the first-order indexes Si – 

which capture the fractional contribution to the model output variance due to the uncertainty in xi – and the total 

effect indices Sti – which concentrate all the interactions involving factor xi in one single term – are calculated 

for each input factor. These indices give us insight in the amount of output variance that is explained by the 

input factors singularly, indicate which factors are mostly involved in interactions with other factors, which 

factors can be fixed without a significant impact on the output and which factor could reduce the output variance 

most if more information was found. This information needs to be considered in the building process of a 

composite road safety indicator.  

 

To conclude, the development of a road safety index is a challenging and necessary task. Uncertainty and 

sensitivity analyses are a prerequisite to develop a methodologically sound index with a large acceptance. In this 

study, a first attempt was described in which the impact of three aspects on the country ranking was the focus: 

the selection of the weighting scheme, the expert and the indicators. In the future, the impact of several 

aggregation methods, normalisation techniques and imputation practices for missing data will be incorporated. 

Finally, the development process of a road safety index needs more elaboration and the analysis of uncertainty 

and sensitivity is indispensable for obtaining a robust road safety index in the end.  
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We introduce a new method for screening factors in mathematical or computational models with large numbers 

of factors. In factors screening one tries to identify active factors in a factors rich model with a minimum 

number of computer simulations. The method proposed here represents an improvement over the best available 

practice for this setting, the method of elementary effects (Morris 1991 [1], Campolongo et al. 1999 [2], 

Campolongo et al. 2000 [3], Saltelli et al. 2004 [4], Campolongo et al. 2007 [5]). Reviews of screening methods 

for computer experiments are in [3-6].  

The proposed new method can offer both estimates of the first order and of the total order sensitivity indices. 
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In this paper we deal with the joint estimation of conditional expectations and conditional variances using the 

state-dependent parameter (SDP) meta-modeling approach, useful for applications in global sensitivity analysis 

(GSA) and in the more general meta-modeling framework. In GSA, the mapping )(XfY   between an output 

Y of a computational model and a set of uncertain input factors ),...,( 1 kXXX  is analyzed in order to quantify 

the relative contribution of each input factor to the uncertainty of  Y. In meta-modeling exercises, the goal is to 

build a statistical approximation )(ˆ Xf  to the computational model )(Xf  that is sufficiently accurate to be used 

in place of the original one (operationally equivalent) and that, at the same time, can be computed in a much 

faster way. Variance-based analysis is the most popular method in GSA. Variance based sensitivity indices of 

single factors or of groups of them are defined as [1]: 
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)]|([

YV

YEV
S I

I

X


, (1) 

where IX  denotes a group of factors indexed by kggii  11 ),...(I , and they tell the portion of variance of Y that 

is explained by IX . There is a clear link between GSA and meta-modeling. First, the approximation )(ˆ Xf  can 

be used to compute sensitivity indices in place of the original computational mapping )(Xf . Second, the 

variance based sensitivity measures can be interpreted as the non-parametric 2R  or correlation ratio, used in 

statistics to measure of the explanatory power of covariates in regression [2,3]. In fact, it is well known that the 

inner argument )|( IXYE  of (1) is the function of the subset of input factors IX  that approximates )(Xf , by 

minimizing a quadratic loss (i.e. maximizing the 2R ). This leads to the second link between GSA and meta-

modeling, whereby estimating functions )|( IXYE  provides a route for both a model approximation and 

sensitivity estimation. Smoothing methods that provide more or less accurate and efficient estimations of 

)|( IXYE  are becoming a popular approach to sensitivity analysis [4,5,6,7]. SDP modeling is one class of non-

parametric smoothing approach first suggested by Young [8]. The estimation is performed with the help of the 

`classical' recursive (non-numerical) Kalman filter and associated fixed interval smoothing algorithms and has 

been applied for sensitivity analysis in [9,10]. In great summary a state dependent model approximating 

)|( IXYE  based on a Monte Carlo sample of dimension N can be written as: 

ttttt espeYEY  )()|( ,, IIIX  (2) 

where te  is the ‘observation noise’ (i.e. what is not explained by IX ) and )(, II sp t  is a state dependent 

parameter, depending on a state variable Is  that moves according to a generalised sorting strategy Nt ,...,1  

along the co-ordinates of the single factor or group of factors indexed by I. According to this generalised sorting 

strategy, the group of input factors of interest I is characterised by a low frequency spectrum (e.g. by some 

quasi-periodic pattern) while the remaining ones present a white spectrum. In this way, the estimation of 

)|( IXYE  reduces to the extraction of the low frequency component of the sorted output Y. To do so, the SDP’s 

are modelled by one member of generalised random walk (GRW) class of non-stationary processes. For 

instance, the integrated random walk (IRW) process turns out to provide good results, since it ensures that the 

estimated SDP relationship has the smooth properties of a cubic spline. Given the IRW characterisation, the 

model (2) can be put into state space form as: 
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where te  (observation noise) and t,I  (system disturbances) are zero mean white noise inputs with variance 2  

and 
2

,tI
  respectively. Given this formulation, SDP’s are estimated using the recursive Kalman Filter (KF) and 

associated recursive Fixed Interval Smoothing (FIS) algorithm. The hyper-parameters associated with (3), i.e. 

the noise variances 2  and 
2

,tI
 , are optimised by maximum likelihood (ML), using prediction error 
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decomposition. In this way, the SDP approach is couched with optimal ML estimation and seems more elegant 

and flexible than the scatter plot smoothing used by Hastie, Tibshirani and others [4,5,7,11]. For example, 

Random Walk (RW) or Smoothed Random Walk (SRW) might be preferable in certain circumstances because 

they yield less smooth estimates. Indeed, if any sharp changes or jumps seem possible, then these can be 

handled using `variance intervention' (see [12]). In particular, all effects that cannot attributed to shifts in the 

mean, are not accounted for by )|( iXYE  and the related variance-based sensitivity indices. For example, if we 

consider Figure 1, in panel (a) we show the estimate of )|( iXYE , in (b) we show that the ‘observation noise’ 

)|( ii XYEYe   has a clear heteroschedastic nature, which is not taken into account by any shift in the mean, 

but that can be modelled by assuming that the variance of ie  is modulated by iX  in some state-dependent 

manner. This is done by the state-dependent decomposition  

tititi nsme  )()log( ,
2
,   

where now the state dependent parameter )(, iti sm  accounts for the modulation effect, shown in panel (c). 

Moreover, remembering the conditional variance expression 

)|()|))|((())|(()|()|( 2222
iiiiiii XeEXXYEYEXYEXYEXYV   

we get the estimate ))(exp()exp()|( tii nEmXYV   shown with the black line in panel (d), compared with the 

horizontal grey line showing the variance of ie , given by )]|([2
iXYVE . Moreover, feeding back the 

estimated state-dependency of 2  with variance intervention [12] in the recursive estimation of )|( iXYE , one 

will get a much more accurate and efficient estimation of the whole pattern and in particular of the sharp change 

at 5.0iX . 
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Figure 3 
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5. Introduction 

In risk assessment problems, the uncertainties of input parameters are transferred through the model to the 

output, and bring about the issue of output uncertainty. The goal of sensitivity analysis (SA) is to quantify the 

relative importance of each input parameter [1]. Iman and Hora [2] proposed that an ideal SA measure should be 

easy to interpret, easy to compute, and robust. Saltelli[3] pointed out that a SA technique should be global, 

quantitative and model free. Borgonovo [4] further extended Saltelli’s requirements for a SA measure by adding 

the fourth feature, moment independence. 

 In [4] Borgonovo proposed a SA indicator δi, which estimates the influence of the entire input 

distribution on the entire output distribution. It does not refer to any particular moment of the output. For the 

readers’ convenience, the derivation of δi is briefly described here. Let fY(y) be the unconditional probability 

density function (PDF) of the model output Y, and fY|Xi(Y) be the conditional PDF of Y, given a value (e.g., xi
(1)) 

of an input parameter Xi. The shift between fY(y)and fY|Xi(y) is measured by the total area s(Xi), which is 

surrounded by these two curves (Fig. 1). It is given by 

dyyfyfXs
iXYYi   |)()(|)( |

            (1) 

 Let the value of Xi changes over its distribution, the expected shift is 

 iiiXiX dxXsxfXsE
ii

)()()]([            (2) 

 The SA indicator δi is defined as 

)]([
2
1
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δi has the property of 0≤δi ≤1 [4]. 

 From Fig. 1, it is known that the essence of δi (more precisely, s(Xi)) 

is to measure the difference of two PDFs by estimating the area surrounded by 

them. Obviously it is neither the difference of the means (medians), nor the difference of the variance between 

the two distributions. Then what is it? Is there any relationship with other statistics? Let us come to probe this 

issue. 

6. Indication of δi 

Let F(y) and f(y) be the CDF (Cumulative Distribution Function) and PDF of an output of interest Y, 

respectively. It is known from statistic textbooks that  

 
y

duufyF )()(             (4) 

F(y) is non-negative and monotonically increasing (0≤F(y)≤1).  

Let f1(y) and f2(y) be two density distributions and suppose they are 

intersected, as shown in Fig. 2(a). The area surrounded by the two curves is 

given by the integral 

432112 |)()(| ssssdxyfyfs          (5) 

Where s1, s2, s3 and s4 are the surrounded areas for y∊(-∞, a], y∊(a, b], y∊(b, c] 

and y∊(c, +∞], respectively. 

For y∊(-∞, a], because f1(y)-f2(y)≥0, we have 

)()()]()([ 21211 aFaFdyyfyfs
a
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        (6) 

Correspondingly, we have 

)]()([)]()([ 12212 bFbFaFaFs           (7) 

)]()([)]()([ 12213 bFbFcFcFs          (8) 

)()( 214 cFcFs                (9) 

Finally, we obtain )]}()([)]()([)]()({[2 211221 cFcFbFbFaFaFs               

(10) 

From Fig. 2(b) we know D1= F1(a)-F2(a), D2= F2(b)-F1(b) and D3= F1(c)-F2(c). Therefore, the surrounded 

area s between two PDFs can be converted to the distance between their CDFS, and it is equal to two times of 

D1+D2+D3. Since 0≤F(y)≤1, we have 0≤D1+D2+D3≤1. This relationship holds for any kinds of intersection 
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between two PDFs. Hence we derive the property of the area s: s∊[0, 2]. 

From the above discussion, we know that the area surrounded by two PDFs can be converted to the distance 

between their CDFs. This remains us of the Kolmogorov-Smirnov test, in which the difference of two CDFs is 

measured by the statistic, the greatest vertical distance between them. It has been pointed out that the two-sided 

Kolmogorov-Smirnov is consistent against all types of differences (e.g., differences in means, medians, 

variance) that may exist between two distributions [5]. When there is only one intersection between two PDFs 

(i.e., no intersection between their CDFs), the surrounded area s between two PDFs is just two times of the 

greatest vertical distance between two distributions. In this case, the area s is equivalent to two times of the 

statistic used in Kolmogorov-Smirnov test. For other cases, the area s surrounded between two PDFs can be 

regarded as the refinement of the statistic used in Kolmogorov-Smirnov test. This can be the indication of δi. 

 Now let us prove the property of δi. For the surrounded area s(Xi)(in Eq. (1)), since 0≤s(Xi)≤2 holds for 

any give value of Xi, we get 0≤ EXi(s(Xi))≤2. Because δi is equal to one half of EXi(s(Xi)), we have 0≤δi ≤1. So 

far, the property of δi is proved in a way different from that in [4]. 

7. A new calculational  method  for δi 

Based on the discussion in Section 2(refer to Fig. 2), it is known that the area surrounded by two PDFs 

(assume n points of intersection between them) is equivalent to two times of the sum of the vertical distances 

between their CDFs when the values of Y are the same as those of all the n intersection points. Therefore, 

different from Borgonovo’s approach [4], a new calculational method for δi was proposed. 

Suppose that the unconditional PDF fY(y) and the conditional PDF fY|Xi=xi
(1)(y)(given a random value xi

(1) of 

the input parameter Xi) can be analytically derived. Based on Eq. (4), we get their CDFs FY(y) and FY|Xi=xi
(1)(y), 

respectively. Since the relationship fY(y)-fY|Xi=xi
(1)(y)=0 happens at the points of intersection, we can obtain the 

values of Y at these points of intersection, assume them to be a1, a2, ..., am. Thus the area surrounded by the two 

PDFs is equal to 

s(xi
(1)) = 2×[(|FY(a1)- FY|Xi=xi

(1)(a1)|+|FY(a2)-FY|Xi=xi
(1)(a2)|)+…+|FY(am)-FY|Xi=xi

(1)(am)|]      (11) 

We then generate a second value xi
(2)for Xi, derive fY|Xi=xi

(2)(y) and FY|Xi=xi
(2)(y), and get s(xi

(2)). Repeating the 

above steps for the total sampling size, we can finally estimate  
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 If fY(y) and fY|Xi
)(y) can only be obtained empirically, Monte Carlo method will be suitable to get them. 

Firstly, the empirical CDF FY(y) is obtained [6]: 
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Where n is the sample size and k is the sample index.  

 According to statistics textbooks, we get the PDF 
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 In the same way, we can get the empirical FY|Xi(y) and fY|Xi(y). Then we can repeat the above procedures 

to find the points of intersection of fY(y) and fY|Xi(y), calculate s(xi
(1))(then s(xi

(2)), …). Finally we can estimate δi. 

8. Concluding remarks 

In this work, the moment-independent SA measure δi is analyzed. It is demonstrated that the area 

surrounded by two PDFs is equivalent to two times of the sum of the vertical distances between their 

corresponding CDFs when the values of output of interest are the same as those of all the intersection points of 

the two PDFs. It can be regarded as the refinement of the Kolmogorov-Smirnov test statistic. Further, a new 

calculational method for δi is proposed. Improvement of this method is under way. 
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One of the most popular sensitivity analysis techniques is Fourier Amplitude Sensitivity Test (FAST). The main 

mechanism of FAST is to assign each parameter with a distinct integer frequency (characteristic frequency) 

through a periodic sampling function. Then, for a specific parameter, the variance contribution can be singled 

out of the model output by the characteristic frequency based on a Fourier transformation. One limitation of 

FAST is that it can only be applied for models with independent parameters. However, in many cases, the 

parameters are correlated with one another. In this study, we propose to extend FAST to models with correlated 

parameters. The extension is based on the reordering of the independent sample in the traditional FAST. 

Another limitation of FAST is that, due to the aliasing effect between parameters by using integer characteristic 

frequencies, we need very large sample size models with many parameters. In this study, we adopted the 

improvement to overcome the aliasing effect limitation proposed by Tarantola et al. [1]. In this way, FAST can 

be a general first-order global sensitivity analysis method for linear/nonlinear models with as many 

correlated/uncorrelated parameters as the user specifies. We apply the improved FAST to linear, nonlinear, non-

monotonic and real application models. The results show that the sensitivity indices derived by our proposed 

FAST are in a good agreement with that from the correlation ratio sensitivity method, which is a nonparametric 

method for models with correlated parameters. 
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Applications of computer code models can become computationally very expensive if they require model runs 

for many different sets of inputs. Accordingly, it is often of great interest to derive computationally cheaper 

surrogate models that can mimic the output of the original model. The currently used techniques for estimating 

response surfaces for deterministic models with multiple inputs are usually based on design criteria that tend to 

favour regular fractional factorial designs or an almost uniform coverage of the experimental region (Bursztyn 

and Steinberg [1]). Moreover, it is common that a global parametric or nonparametric model is fitted to the 

computed responses for all design points (Iooss et al. [2]). Here, we develop a local approximation technique 

that is particularly appropriate for single-output deterministic models for which the curvature or roughness of 

the response surface varies markedly over the experimental region. In addition, we illustrate the performance of 

our method by deriving surrogate models of the INCA-N model (Whitehead et al. [3]), which is a hydro-

geochemical model of the flows of water and nitrogen through a river basin. 

A suitable experimental design for deriving surrogate models should be space-filling and have a particularly 

good coverage of regions where the response surface is so rough or nonlinear that it is difficult to extrapolate 

observed model outputs to outputs for previously untried inputs. We propose a sequential design in which a p-

dimensional experimental region D = {x; ai  xi  bi, i = 1, … , p} is partitioned into cuboid-shaped sub-regions, 

and the corners and centre of D are taken as an initial set of design points (figure 1-(i)). New sub-regions are 

formed by estimating the roughness of the response surface in each of the existing sub-regions and then splitting 

the one having the maximum roughness into two halves. New design points are formed by taking the centre and 

corners of the new sub-regions (figure 1- (ii) and (iii)). 
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Figure 1. Design points selected in the first three steps of our sequential algorithm. 

 

The roughness of the response surface in a given sub-region Di is estimated by employing a simple local 

regression technique. First, a second-order polynomial 
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where V(Di) denotes the volume of Di. Finally, the sub-region having the maximum R-value is split into two 

halves along the axis for which |ˆ| jb  achieves its maximum value. 

The behaviour of the proposed design algorithm can be illustrated by the results obtained when the INCA-N 

model was used to examine how the average annual loss of nitrogen from an agricultural soil is related to the 

denitrification rate and the maximum nitrate uptake rate by the crop grown on that soil. The left diagram in 

figure 2 shows a response surface obtained by running the INCA-N model for a dense grid of design points. The 

right diagram shows the design points that were selected when a surrogate model was derived. In particular, it 

can be seen that the design points are concentrated to sub-regions where the response is non-linear.  
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Figure 2. Response surface for nitrogen losses computed with the INCA-N model (left). Design points selected 

by our sequential design algorithm (right). 

 

Further computer experiments involving the INCA-N model showed that high efficiency surrogate models could 

be derived for the relationship between the average annual loss of nitrogen and various subsets of model 

parameters controlling the turnover of nitrogen. This makes such surrogate models attractive for sensitivity and 

uncertainty analyses that can require thousands of model runs. Figure 3 shows the efficiency achieved for 

models with five and seven parameters, respectively. In particular, it can be seen that, even though the model 

under consideration was moderately nonlinear, our design was superior to grid designs with the same number of 

design points. 
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Figure 3. Efficiency of surrogate models derived from INCA-N simulations using our sequential design and 

regular grid designs. Model output: average annual nitrogen loss from an agricultural soil. Model inputs: 

parameters controlling the turnover of nitrogen. 
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An innovative sequential experimental design technique is proposed for the statistical analysis of expensive 

simulators with generally nonlinear outputs. The main objective is uncertainty analysis of outputs of complex 

computer models, such as oil reservoir simulators [5]. Such simulators usually require several hours or days for 

a single run, therefore direct sampling methods for uncertainty analysis (Monte Carlo) are usually impractical. 

 

To reduce the number of necessary runs, the simulator output is approximated using different statistical 

regressions techniques such as low order polynomials or non-parametric regressions models based on stochastic 

Gaussian processes, such as kriging [3] or Bayesian approaches [2].  

In this work we focus on non-parametric regression, which is more suited for nonlinear outputs than classical 

regression [4]. The objective is to build an accurate approximation of the model output as a function of its 

uncertain input using the least possible number of simulator runs.  

 

To this end, we combine non-parametric regression with a new sequential experimental design based on the 

statistical information provided by the stochastic process used in the approximation.  

A response )(xf  is modelled as a realization of a Gaussian process )(xZ  with a certain mean and covariance 

function. The mean and the covariance are generally unknown and are usually estimated by maximizing the 

marginal density of the data. To model the different impact of each input on the output, the covariance function 

),( yxC  of the Gaussian process is taken as anisotropic: 
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where i  are correlation lengths corresponding to the different inputs. 

At each step of the sequential design, the correlation lengths are estimated and are used to perform adaptive 

domain decomposition in order to split the input domain into quasi-uncorrelated input regions. Then new 

experimental points to be simulated are added into each region, according to customized predictivity criteria.  

Note that the number of points used in the sequential design will depend on the complexity of the function to 

approximate and on the desired accuracy of the approximation.  

 

Several applications to standard test cases from oil reservoir simulation and also to standard analytic functions, 

will be presented. Comparisons are made with the well known maximin latin hypercube design showing, in all 

the considered test cases, a substantial improvement of the sequential design in increasing the approximation 

accuracy using the same number of simulations. Our customized accuracy estimation based on cross-validation, 

is used to find a threshold number N* after which adding simulation points do not sensibly increase the 

accuracy. An explanation of this behaviour, the "non-stationarity" of the response (as observed in the example 

shown in figure below) will be presented and discussed.  
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Example of non-stationary response surface: oil production rate as a 

function of two uncertain parameters (IC Fault Model) 
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This study is realized in the framework of the SENSIB project (an acronym referring to radioecological 

sensitivity) [1] which has been developed since 2003 by the French Institute for Radioprotection and Nuclear 

Safety (IRSN) and benefits from the financial support of ADEME, French Environment and Energy 

Management Agency. The main goal is to develop a standardised tool with a single scale of indexes in order to 

describe and compare the sensitivity of various environments to radioactive pollutions. Each index will 

represent a level of response of an environment to a pollution; for example an index of 1 refers to a low sensitive 

territory whereas a level of 5 refers to a high sensitive territory. 

This communication focuses solely on the agricultural aspects of the SENSIB project. The objective is to 

determine whose factors (agronomical or radioecological) are of prime influence on the radioactive 

contamination of agricultural productions and will be the bases for the indexes construction. The identification 

of characteristics of the French territories whose stronger influence the fate of a radioactive contamination in the 

environment is based on radioecological models. These models are generally non–linear and utilize agronomical 

and radioecological input variables, often linked by linear and/or non-linear relations. That is why in order to 

obtain more knowledge and precision of how the models work, we decided to perform an original global 

sensitivity analysis by using classification trees techniques [2,3]. Contrary to the other methods of global 

sensitivity analysis [4], the classification trees techniques allow to determine which input variables or 

associations of input variables contribute mainly to the different categories (predetermined) of the model output. 

So, the pathways linking the input variables and the output of the model can be more precisely described and 

used to propose recommendations to mitigate the consequences of environmental radioactive contamination. 

 

The method used to perform the sensitivity analysis is the CART method (Classification And Regression Trees) 

developed by Breiman et al [5]. The method is non-parametric and enables the construction of regression or 

classification trees depending on whether the output variable is quantitative or qualitative. A classification tree 

is constructed by successively splitting the data set into subsets called nodes. A recursive binary partitioning 

process is applied whereby parent nodes are always divided into two descending nodes (intermediate or 

terminal), and this process is repeated by considering each intermediate node as a parent node (see Figure 1).  
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Figure 1: Example of classification tree 

 

The building of a classification tree rests on a splitting criterion based on an impurity function (a pure node 

contains only values of one class of the output variable). Different splitting criterion exists, we use for the 

present study the entropy criterion defined by: 
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where m is the number of classes of the output variable and P(k/t) the conditional probability of class k knowing 

that we are in the node t. Every splitting d at the node t leads to an impurity reduction: 
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where pg et pd are the proportion of the values in the left and the right nodes, respectively. The best splitting d* 

maximizes the impurity reduction:  DdtdiMaxtdi  );,()*,( . 

The building of a classification tree by the CART method rests on the successive application of the three 

following steps:  

By performing a division δ on one of the input variables Xk, the root 

node t0 (containing all of the output values) is divided into two child 

nodes t1 and t2 (two data sets): the node t1 contains the output values 

for which Xk < δ and the node t2 contains the complementary set. 

This process is then repeated on the descending nodes; they are also 

splitted into two child nodes. When the nodes are not divided, they 

are called terminal nodes or leaves and are assigned to a class of the 

output variable. Thus, each branch originating from the root node t0 

of the tree constitutes a path which, by a series of yes/no questions, 

arrives at a terminal node. 
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- Growing maximal tree. The data set is splitting successively in order to build an extended tree. The splitting 

process is stopped when the node is pure or when the number of values in the node is less than a fixed size.  

- Tree pruning. A sequence of trees is build. It consists in removing the large-sized branches of the extended tree 

which involve a weak increase of the misclassification rate. In order to measure this increase, a complexity 

parameter α is calculated and as it increases, more and more branches are pruned away leading to smaller trees. 

- Selection of the optimal tree. Among this sequence of subtrees, the optimal tree has to be selected. The 

selection is based on the evaluation of the predictive error using a cross-validation or a pruning sample. 

 

This method was applied on the concrete example of the transfer of strontium 90 to lettuce, the strontium 90 

being released in an agricultural media due to an accidental emission in the atmosphere. The classification tree 

obtain (with the S-PLUS software) is presented on the Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, one of the disadvantages of classification trees is their instability [6]. A little modification in the data 

set (used to build the tree) can lead to a very different tree. This instability has an impact on the tree nodes 

(splits), on the tree size, and moreover on the prediction. To avoid this problem and to stabilize the results of 

predictions, methods based on model aggregation like Bagging [7] or Random Forest [8] are proposed. These 

methods can clearly improve the capacities of the predictors, however the tree structure is lost and so the 

potential decisions rules which result from it are also lost. In order to preserve the tree structure and to obtain 

more stable decisions rules, a node-level stabilizing procedure is proposed [9]. By using this algorithm a new 

extended tree is build. The new optimal tree obtained is more stable and support a more robust identification of 

the most sensitive variables. This method was applied on the preceding example and allows us proposing robust 

recommendations to mitigate the consequences of environmental radioactive contamination. 
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The primary node is based on the input variable 

Rc, interception rate (range [0, 1]). From the left 

branch of the tree, we can deduce a first decision 

rule:        if  Rc < 0.1 then 90Sr activity = low. 

Because the variable Rc can be correlated with 

the stage of growing of vegetable, such an 

indication of Rc can be translated directly in 

operational countermeasure for the farmers. 

Variables or association of input variables 

whose characterize high values of activity are 

deduced from another branch of the optimal tree, 

for example: 

if  Rc ≥ 0.1 and Delai < 29.5 and Dep ≥ 4476.23 

then 90Sr activity = high. 

Thereby, a complete examination of the tree 

structure allows determining whose 

combinations of factors are responsible to low 

and high values of radioactive contamination. 

 

1: low (if the values of concentrations are lower than 100 Bq.kg-1 fresh)      

2: high (if the values of concentrations are higher than 100 Bq.kg-1 fresh)      

Rc: Interception capacity of the lettuce (wd), Dep: Activity deposited (Bq.m-2), 

Delai: Time between the deposit and the harvest of the plant (day)

yes no

1: low (if the values of concentrations are lower than 100 Bq.kg -1 fresh)      

2: high (if the values of concentrations are higher than 100 Bq. kg-1 fresh)      

Rc: Interception capacity of the lettuce (wd), Dep: Activity deposited (Bq.m-2), 

Delai: Time between the deposit and the harvest of the plant (day)

yes no

 
Figure 2: Classification tree obtained 
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A comprehensive analysis is presented of the different types of phase sensitivities of limit cycle oscillators with 

respect to parameters. A general framework based on the solution of a boundary value problem is presented 

which permits exact calculation of the desired quantities. Furthermore, a decomposition of the state sensitivities 

into a sum of three terms each with a specific contribution to the overall sensitivity is discussed in detail. 

Numerical examples are used to demonstrate the techniques and validate the results. Example systems are taken 

from the biological literature, where limit cycle oscillators of different levels of detail are used to model the 

circadian clock mechanism.  

 

The sensitivity analysis of limit cycle oscillators is, compared to the sensitivity analysis of other dynamical 

systems, complicated by several factors. First, from any initial condition within the region of attraction, the 

periodic orbit is reached only in asymptotic fashion, but it is of interest to study its exact properties. 

Furthermore, it is desired to analyze derived properties which are implicit in the mathematical description of the 

limit cycle, such as amplitude, period and phase of oscillation, and their parametric dependencies. 

A boundary value formulation, similar to the one proposed by Rosenwasser and Yusupov [1], avoids dealing 

with transients and allows the direct computation of the period sensitivities of the limit cycle. A boundary value 

problem (BVP) is formulated similarly to those used in circuit analysis [2], in such a fashion that the first n 

equations ensure the periodicity of the solution, and the (n+1)st equation is a phase locking condition (PLC) 

which defines a reference for time zero. When these equations are formally differentiated with respect to the 

parameters, the resulting matrix equation can be solved for the period sensitivities and the sensitivities of the 

initial conditions on the limit cycle, as found from the solution of the BVP. Using these initial condition 

sensitivities, the sensitivity trajectories can be integrated along with the dynamic system, and amplitude 

sensitivities can be obtained from the sensitivities at the extrema of the various state variables [1]. 

The work presented here shows that the choice of PLC is of significance not only for the numerical well-

posedness of the resulting BVP, but more importantly for the computation and interpretation of meaningful 

sensitivities of derived properties, in particular those of the peak-to-peak sensitivities, as described below.  

As shown in [1,3-4], the state sensitivities can be separated into an unbounded, period-dependent part and a 

strictly periodic part, 
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sensitivities with respect to the parameters, and )(tZ are the T -periodic sensitivities of the state variables with 

respect to the parameters at a fixed period.  

This work introduces an exact and unique decomposition of the periodic part (t)Z  into a periodic, phase 

dependent part and a periodic, amplitude dependent part. (A similar decomposition into amplitude and phase 

components was used for oscillator noise analysis [5]). The full sensitivity is thus composed of three specific 

contributions: 
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whereδ is a constant row vector that describes the influence of the PLC on the solution of the BVP and contains 

information about the sensitivities in the direction tangential to the periodic orbit. )(tW are the state 

sensitivities for constant period and constant phase, in other words the )(tW term describes only the influence 

of the parameters on the amplitudes of the different state variables and therefore the shape of the limit cycle. 
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This new decomposition is the starting point for the definition and computation of different types of phase 

sensitivities. First, a sensitivity of the phase set by the PLC with respect to the parameters is discussed. This 

quantity is then used to define a particular type of sensitivity, which is unique to oscillatory systems, and is 

termed a “peak-to-peak” sensitivity. It describes how an infinitesimal change in parameters would cause a 

change in the time between two peaks or troughs of different state variables. The choice of PLC is obvious in 

this case, an extremum of a state variable of interest is chosen as the time reference. A simple equation is 

derived for the exact computation of these sensitivities and the results are compared to the proportional 

sensitivity of the peak-to-peak distance with respect to overall period change (i.e., stretching or compressing of 

the oscillation). In doing so, information about the flexibility of the system is gained, in the sense of whether the 

time span between specific events (e.g., peaks) can be varied independently of the overall period.  

This quantity is of interest in the context of circadian biology; while the total length of day is constant at 24 

hours, the length of the sunlit day, or the time between dawn and dusk, undergoes seasonal variation. It could be 

hypothesized that the clock mechanism might have the capability of adjusting to this variation by varying the 

peak-to-peak distances of pertinent state variables without varying the period of oscillation. This hypothesis is 

evaluated using peak-to-peak sensitivity analysis.  

 

A different type of phase sensitivity analysis is the analysis of phase shifts caused by perturbing the state 

variables from the limit cycle. Such perturbations cause temporary deviations from the periodic orbit that decay 

over time, but result in permanent phase shifts that are a functions of the perturbation and the system 

parameters. The sensitivity of this permanent phase shift with respect to the perturbed variables and also with 

respect to the system parameters is derived and computed exactly and efficiently.  

The sensitivity of the phase shift with respect to the perturbed states was approximated in the past using a limit 

finding process [4]. We show, however, that this sensitivity information is contained in the first left eigenvector 

of the Monodromy matrix of the limit cycle oscillator, with appropriate scaling.  

 

The sensitivities described above were computed for two model systems. The first test system is a simple model 

of the circadian clock, called the Goodwin oscillator, composed of 3 state variables and 6 parameters [6]. The 

second test system is the most detailed ordinary differential equation model of the circadian clock currently 

published, which consists of 73 state variables and 231 parameters [7]. All results were compared to finite 

difference approximations, to demonstrate the methods are accurate yet far more efficient.  
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Sensitivity analysis is normally used to analyze how sensitive a system is with respect to the change of 

parameters or initial conditions and is perhaps best known in systems biology via the formalism of metabolic 

control analysis [1, 2]. The nuclear factor B (NF-B) signalling pathway is an important cellular signalling 

pathway, of which protein phosphorylation is a major factor controlling the activation of further downstream 

events. The NF-κB proteins regulate numerous genes that play important roles in inter- and intra-cellular 

signalling, cellular stress responses, cell growth, survival, and apoptosis. As such, its specificity and its role in 

the temporal control of gene expression are of crucial physiological interest.  

 

The mathematical model used in this work is the TNF-mediated NF-κB model provided by Hoffmann et al. 

[3]. In this model (and experimentally) there are significant oscillations in the concentration of NF-κB in the 

nucleus (NF-Bn) [3-5]. The dynamics of the system is described by a set of ordinary differential equations 

(ODEs) with given initial conditions. As this system involves a large number of reactions and the parameters 

span several orders of magnitude, the ODEs turn out to be nonlinear and stiff. The direct differential method 

(DDM) is used to calculate the local sensitivities as a function of time. Relative sensitivity coefficients are used 

for parameter ranking and experimental design. In order to consider the complete dynamics of the oscillation 

system, two performance indices are proposed for analysis. One is to use a single variable (nuclear NF-B) to 

form the L2-norm performance, the other is to include all species concentration profiles to formulate the 

Euclidean-norm function. For this system, the local sensitivity analysis using nuclear NF-B only and all 

species produce consistent results (see fig 1 (a) and (b)).  
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                           (a) single variable: NF-Bn                                                          (b) all variables included 

Figure 1. Relative sensitivity indices with single variable and multiple variables 

 

The Morris method [6] is used to investigate the global sensitivity of the system. It is supposed that a finite 

distribution of elementary effects associated with each input can be estimated. Two sensitivity measures were 

proposed for each factor: μ, an estimate of the mean of the distribution, and σ, an estimate of the standard 

deviation of the distribution. These two measures are used as indicators of which inputs should be considered 

important. Modifications to the original Morris method is proposed to deal with the case that the parameters are 

within wide and different intervals. Simulation results in terms of μ are given in fig.2 with both wide and narrow 

ranges being considered. It can be seen that when the parameter range is very small, global analysis makes 

similar results as that of the local analysis (see fig.1 (a) and fig2. (a)). However, when the analysis range is 

large, it produces a different sensitivity pattern from the local analysis (see fig.1 (a) and fig2. (b)). This is 

because global sensitivity analysis can provide information on interactions between parameters and also reveal 

the non-linear effects from simultaneous parameter variation while local sensitivity analysis can’t. 

 

Optimal experimental design on the IKK activation intensity is then performed based on sensitivity analysis. 

Under the assumption of uncorrelated measurement noise with zero-mean Gaussian distribution, the 

information content of measurements can be quantified by the Fisher information matrix (FIM) [7, 8]. In 

general, the smaller the joint confidence intervals for the estimated parameters are, the more information is 

mailto:h.yue@manchester.ac.uk
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contained in the measurements. The FIM is formulated from the sensitivity matrix. Along with the Cramer-Rao 

theorem, the FIM is used to determine the optimal step input signal such that the estimated parameters have the 

minimum variance. Taking IKK as the step input and nuclear NF-B as the system output, four commonly used 

optimal design criteria, i.e., A-optimal, D-optimal, E-optimal and the modified E-optimal design, are used for 

calculation. Simulation shows that the optimal initial concentration of IKK is 0.1 M under the modified E-

optimal design, and it is 0.06 M under the other three optimal designs. The 95% confidence intervals of these 

two results are illustrated in fig.3 when two sensitive parameters are considered each time. It can be seen that 

the optimal input amplitude should be 0.06 M because its confidence interval ellipsoid is smaller. 
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NF-kBn (r=100, p=8, L=0.99, U=1.01)
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                       (a)  narrow range [0.99, 1.01]

0                                         (b)   wide range [0.01, 100]
0                                           

Figure 2. Global sensitivity analysis results in terms of the mean value of the elementary effects in Morris 

method (
0  stands for nominal value in simulation) 

 
Figure 3. Confidence intervals of two different amplitudes of the step input  

References 

[1] Kell DB, Westerhoff H: Metabolic control theory: its role in microbiology and biotechnology. FEMS 

Microbiology Reviews 39, 305-320 (1986) 

[2] Fell D A: Understanding the control of metabolism. London: Portland Press, 1996. 

[3] Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IB-NF-B signaling module: temporal control 

and selective gene activation. Science 298, 1241-1245 (2002) 

[4] Ihekwaba AEC, Broomhead DS, Grimley RL, Benson N, Kell DB: Sensitivity analysis of parameters 

controlling oscillatory signalling in the NF-B pathway: the roles of IKK and IB IEE Proceedings 

Systems Biology 1, 93-103 (2004) 

[5] Nelson DE, Ihekwaba AEC, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton 

CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley RL, Benson N, Broomhead 

DS, Kell DB, White MRH: Oscillations in NF-B signaling control the dynamics of gene expression. 

Science 306, 704-708 (2004) 

[6] Morris MD: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161-

174 (1991) 

[7] Emery AF, Nenarokomov AV: Optimal experimental design. Meas. Sci. Technol. 9, 864-876 (1998) 

[8] Faller D, Klingmuller U, Timmer J: Simulation methods for optimal experimental design in system biology. 

Simulation 79, 717-725 (2003) 



 64 

UNCERTAINTY ANALYSIS OF NITROGEN OXIDE FORMATION 

IN METHANE COMBUSTION 
 

I. Gy. Zsély, J. Zádor, T. Turányi 

Eötvös University (ELTE), Hungary 

zsigy@chem.elte.hu 

 

The combustion of methane is one of the most frequently modelled chemical reactions due to its high 

academic and industrial importance. Methane is the main component of natural gas, which is widely used for 

power generation and heating. NO is the major pollutant formed during natural gas combustion. Methane 

combustion mechanisms are widely used for the prediction of the NO production and can be used for the design 

of low-NOx burners. No quantitative investigation of the uncertainty of the NO production has been published. 

Also, the uncertainty of the ratios of the various NO formation routes is not known. 

In this study, the Leeds Methane Oxidation Mechanism [1], extended with an NO-formation mechanism [2] 

was used. This joint mechanism is capable of simulating the formation of NO during methane combustion at a 

wide range of conditions. The mechanism contains 340 irreversible reactions of 56 species. The kinetic data 

were updated based on a literature search and the thermodynamic data were revised using Burcat’s recent 

thermodynamic database [3].  

The NO formation kinetics was investigated at the conditions of the experiments of Bartok et al. [4]. This set 

of experiments is a frequently used benchmark of NO formation during methane combustion. The experiments 

were carried out in a perfectly stirred reactor at atmospheric pressure. The residence time was 3 ms and the 

equivalence ratio was changed between 0.67 and 1.75. The simulations were carried out with the PSR code [5] 

of the CHEMKIN-II package. This program was modified for calculating the local enthalpy-of-formation 

sensitivity coefficients and carrying out sequential calculations with several different parameter sets as required 

by the global uncertainty analysis methods. Local uncertainties were calculated by program KINALC [3]. 

 Combustion models include thousands of parameters, like kinetic parameters, thermodynamic data, 

diffusion coefficients etc. In this study, the uncertainty of rate coefficients and enthalpy-of-formation data were 

considered. For the rate coefficients, lognormal distribution was assumed; the variance was determined [6] from 

the uncertainty factor f, which was available from several kinetic databases. Normal distribution was assumed 

for the enthalpies-of-formation of each species; the expected values and the variances were determined from 

thermodynamic databases. The uncertainties of all kinetic and thermodynamic parameters were assumed to be 

independent. 

 Based on local sensitivity coefficients and the variance of parameters, and using the rules of error 

propagation [6] uncertainty of the calculated NO concentration was determined. This local uncertainty analysis 

allows computationally cheap investigation of the contribution of parameters to the uncertainty of results and the 

determination of the ratio of the kinetic and thermodynamic uncertainties. 

Monte Carlo Analysis with Latin Hypercube Sampling (LHS MC) [7] was carried out; 1000 parameter sets 

were generated and used in the simulations in each case. Processing the results, the probability density function 

of the calculated NO concentration was determined. Also, this analysis shows [7], which are the possible 

maximum and minimum NO concentrations that can be achieved by tuning all parameters simultaneously within 

their physically realistic limits. 

 At lean conditions, the measured data are well within the uncertainty limits of simulations. At fuel rich 

conditions, the uncertainty limits are lower and the experimental data are outside the uncertainty limits, showing 

a major applicability problem of the mechanism at these circumstances. There was good agreement at all 

conditions between the variance of NO concentrations calculated by local and global (Monte Carlo) methods. 

 We have determined that at stoichiometric conditions the uncertainty of the calculated NO 

concentration is mainly due to the uncertainty of kinetic parameters. Changing the equivalence ratio to lean and 

especially to rich conditions, the contribution of the thermodynamic data to the uncertainty significantly 

increased. The lists of reactions and species were determined, belonging to the kinetic parameters and 

enthalpies-of-formation that cause high uncertainty of NO production. These parameters included the enthalpy-

of-formation of NNH at lean conditions; kinetic parameters of reactions NO+NH=N2O+H, O+NNH=NH+NO, 

H+CH2=CH+H and H2O+CH=CH2O+H near stoichiometric conditions; and H2O+CH=CH2O+H at fuel rich 

conditions.  

In combustion systems, NO can be formed in four parallel pathways; these are the thermal, prompt, via N2O 

and via NNH formation routes. The relative contribution of these formation pathways and their uncertainty was 

investigated as a function of equivalence ratio. Based on the Monte Carlo analysis results at three equivalence 

ratios, NO-formation histograms for each route were generated.  
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Figure 1: Comparison of the experimental data of Bartok et al [4] (squares), the simulation results (line) and the 

1 uncertainty of the simulation results. 
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The use of accurate computational models describing combustion processes is crucial for the design of low 

emission technologies. Trace amounts of sulphur in the fuel can have an impact on the extent of nitrogen oxide 

emissions and therefore suitable models describing the interaction of sulphur containing compounds with other 

species within flames are required [1]. Sulphur chemistry is however, quite poorly understood at high 

temperatures, with many reaction rates and thermochemical parameters being estimated in previous studies. An 

assessment of the resulting uncertainty in predictions of nitrogen oxide emissions is therefore of interest. 

Identifying the main sources of uncertainty provides useful information for further experimental and ab initio 

kinetic studies. Combustion models provide a challenge for uncertainty analysis since they often contain a large 

number of uncertain parameters such as reaction rate coefficients and heats of formation. If such parameters are 

estimated then their uncertainty ranges can be quite large [2]. Combustion models also tend to be highly 

nonlinear. The use of traditional methods for global uncertainty and sensitivity analysis such as Monte Carlo 

simulations therefore becomes problematic due to their computational expense and the difficulty in interpreting 

the results for large parameter sets.  Commonly a screening method such as the Morris method [3] is first 

applied in order to identify unimportant parameters if the input space dimension is very high. This can help with 

the interpretation of Monte Carlo outputs, but does not necessarily reduce their computational expense [2]. 

Recently the method of high dimensional model representation (HDMR) [4] was developed to provide a model 

replacement that can be easily employed within global uncertainty analysis. HMDR methods provide a 

straightforward approach to explore the input output mapping of a model without requiring large numbers of full 

model runs.  Furthermore, sensitivity indices can be determined in an automatic way in order to rank the 

importance of input parameters and to explore the influence of parameter interactions.  

 

The effectiveness of the Random Sampling (RS)-HDMR [5] approach is shown in this work via application to a 

premixed methane flame model describing the influence of fuel trace elements, such as sulphur containing 

compounds, on the formation of nitrogen oxides in combustion devices. The modelling process is carried out by  

the CHEMKIN [6] package and the simulation has been performed using PREMIX [6]. The SOx extension of 

the methane/NOx mechanism studied here consists of 156 reversible reactions and 24 species [2]. The 

uncertainty study focuses on reactions of sulphur containing species and their heats of formation. Due to the 

poor categorisation of many of the thermo-kinetic parameters, uncertainty ranges are defined according to a 

minimum and maximum possible value with equal probability of the values across the range.  

 

An optimisation method was introduced in [7] as an extension to the existing set of RS-HDMR tools. The RS-

HDMR component functions can be approximated by analytical basis functions such as orthonormal 

polynomials  which reduces the sampling effort dramatically [5]. Usually the first and second-order component 

functions are approximated by orthonormal polynomials all of the same order. The idea of the optimisation 

method is to decide which component function is approximated best by which polynomial order. In [7] a 

maximum polynomial order of three has led to very satisfactory results. This approach has been extended here 

to further improve the accuracy of the mapping process by applying a maximum polynomial order of seven. The 

optimisation method also provides a possibility to exclude HMDR component functions, which have only a very 

small contribution to the overall output uncertainty, by introducing a threshold. This provides an automatic way 

to identify unimportant parameters within the analysis, thus removing the necessity to employ screening 

methods, even for a problem with such a high dimensional input space. For comparison, the results obtained 

from the extended RS-HDMR method are compared with widely used methods, such as Morris One at a Time 

and Monte Carlo simulations.  

 

The computational effort required for the construction of the HDMR model replacement is considerably lower 

than for traditional global uncertainty analysis methods. A total of only 1024 full model runs were sufficient to 

produce a model replacement with very high accuracy. The model replacement can then be used to assess the 

output uncertainty of the model and to calculate sensitivity indices. In this study we explore the sensitivity of 

nitrogen oxide emission to possible changes in the kinetic rate parameters and the thermodynamics of sulphur 

containing compounds.  
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The three highest ranked reactions identified by the HDMR method are SO+NH=NO+SH, SO+N=NO+S and 

SO+OH=SO2+H. The Morris method identifies the same reactions in the same order. The final NO 

concentration is mainly influenced by first-order effects, which means that input parameters are acting 

independently upon the output. Plots of the HMDR component functions are shown to reveal useful information 

about the input output relationships of the model and can be used to calculate first and second-order sensitivity 

indices without the need for additional full model runs. Some of the first-order effects are identified as being 

very non-linear as shown in Figure 1. The results indicate that several parameters show high sensitivity in some 

parts of their input ranges but that their effect is much reduced in other regions. Local sensitivity coefficients 

would therefore be strongly affected by the nominal values chosen.  

 

 

The output statistics of the full model are shown to be well represented by the model replacements. The 

proposed HDMR method therefore provides a powerful tool for general application to global uncertainty and 

sensitivity analysis of chemical models and can be applied without using a screening method in advance in order 

to identify unimportant parameters. 
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The purpose of the paper is to show that polynomial chaos expansions can be effective in modelling 

uncertainties and dealing with sensitivity analysis based on the analysis of the variance. We show the connection 

between Sobol’s decomposition and generalized polynomial chaos expansion for sensitivity estimates for non 

linear mathematical models. 

1. Polynomial Chaos expansions 

Polynomial Chaos (PC) expansions are derived from on the original theory of Wiener [1] for the spectral 

representation of stochastic processes using Gaussian random variables. PC expansions have been used for 

uncertainty quantification by Ghanem and Spanos [2] and extended by Xiu and Karniadakis [3] to non-Gaussian 

uncertainty input. Any well-behaved process y (e.g. second order process) can be expanded in a convergent (in 

the mean square sense see Cameron and Martin [4]) series of the form : 

 
k kk txytxy )(),(),,(   

where is a set of d independent random variables with a known joint density )(p , k are orthogonal 

polynomials and ),( txyk are the PC coefficients or stochastic modes of y. Denoting with the brackets “<.>” the 

expectation operator and taking into account orthogonality of k we have : 
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

kkk txytxy ).,(),(
2

(1) 

For practical use, the PC expansions have to be truncated in term of polynomials order. Several approaches can 

be used to estimate PC coefficients. The first is based on Galerkin projection of the model equations, leading to 

a set of coupled equations for the coefficients ),( txyk . This approach requires an adaptation of deterministic 

solvers. Opposing approaches, of simpler implementation, are based on Monte-Carlo simulations or quadrature 

formulas to evaluate PC coefficients from equation (1), see for instance Le Maître et al [5]. When the number d 

of variables is large, quadrature formulas based on tensor product of 1D formulas, requires too many numerical 

evaluations and sparse grids integration based on Smolyak’s constructions [6] are preferred. PC coefficients are 

therefore evaluated from a set   niii ,,2,1,,  of points and weights by formulas of the form  
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The projection on the PC basis results in a surrogate model approximating the numerical model of uncertainties : 

 
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The mean and the variance are derived from the PC expansion respectively by the first coefficient ),(ˆ
0 txy and 

by
2

1

2 ),(ˆ
k

p

k k txy  
.  Fractiles can also be calculated by Monte-Carlo simulations of the PC surrogate 

model. 

2. Sensitivity analysis from PC expansions 

Now, we consider the global analysis, like named in Saltelli et al [7] based on analysis of variance and we use 

Antoniadis’s notations [8]. To simplify notations, let us consider a random variable and a Sobol-like 

decomposition of a PC expansion of y : 
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where uf gathers the terms of the PC expansion which depend only of the components of  u whose index 

is in u with 00
ˆ,ˆ yyf  . Let us note uK the subset of the set of indexes  pK ,,2,1   such as 

 )()( ukku KkK   .  

Taking into account orthogonality of uf and k , we have : 
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and we obtain the ANOVA decomposition and the Sobol’s sensitivity indices : 
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We have applied PC expansion to two classical test using Petras’s toolbox [9] for sparse numerical quadrature.  

 

  

 

The figures show absolute error of sobol indices according to the number of evaluations of the numerical model, 

Homma-Saltelli model (left) :   ,,1.0,7),sin()(sin)sin( 1

4

32

2

1  Ubaba i  and 

Saltelli-Sobol model (right) :   )1,0(,5,2/)1(),1/(24
1

Udiaa iii

d

i i  
 . We can observe 

that the error decreases in n/1  for MC simulations. PC requires less numerical evaluations than MC 

simulations. Nevertheless, the difference in efficiency PC-MC reduces when the stochastic dimensions 

increases. Current efforts focus on the construction of sparse grids and adaptive methods to improve the 

precision on the integral evaluations and improve the convergence of PC expansions [10]. 
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Recent works have proposed the use of a moment independent measure of uncertainty importance by 

looking at the entire distribution of the model output (Borgonovo [1] and [2]). Let XERn be a set of 

(correlated) input factors characterized by the joint p.d.f )(xf X , and Y=g(X) be the output of the model of 

interest. The -importance of Xi is defined (Borgonovo [1] and [2]) as: 

 

    dyyfyfE
ii XYYXi )()( |   (1) 

where )(yfY  is the  joint unconditional density of Y and )(| yf
iXY  is the conditional density of Y given Xi. 

The works of Borgonovo [1] and [2] have estimated and compared  and Sobol’s sensitivity indices for 

models in the absence of correlations. We recall that Sobol’s global sensitivity indices are defined starting from 

the following high-dimensional model representation of Y (Sobol’ [3], Alis and Rabitz [4]): 

 

 )X,...,X,X(g...)X,X(g)X(g)X(g n21n,..,2,1

ji

jij,i

i

ii +++= ∑∑
<

 (2) 

 

The decomposition in eq. (2) is unique under the assumption that ∏=
i

XX )x(f)x(f , i.e., when the Xi are 

independent.  

Correlations (and dependencies in general) lead to a number of issues in performing global sensitivity 

analysis, as highlighted in the works of several authors. Bedford [5], evidences that correlations cause loss of 

uniqueness of eq. (2). Saltelli and Tarantola [6] treat the computation of variance-based importance measures by 

introducing two “Settings.” In the first setting they identify the factor that, if determined, would lead to the 

greatest reduction in the output variance . The corresponding sensitivity measure is: 

 

   ii XYEVV |  (3) 

 

Vi coincides with the first order terms of Sobol’s variance decomposition in the absence of correlations. The 

second setting of Saltelli and Tarantola [6] consists in identifying the smallest set of factors that leads to a target 

variance reduction. 

 In this work, we study the effects of correlations in the computation of the  importance measure, as 

they have not been dealt with yet, and compare them to the effects on the variance-based measure in eq. (3). We 

proceed as follows. We tackle the issue of the computation first. We develop a numerical algorithm based on 

Replicated Latin Hypercube for the generation of the correlated samples. We inspect the effect of correlations 

using three test cases: a linearly additive model, a multiplicative model and the Ishigami test function (see [1] 

and [2]). On all the models analytical expressions for Vi importance measures were available. We investigate the 

effect of increasing correlations in the parameters on the sensitivity analysis results. We obtain first the results 

for the independence case; we then examine the effect of a 0.25, 0.50, 0.7 and 0.9 correlation on the parameters. 

The utilization of the linear case has the advantage of making transparent the effect of correlations, as no 

interactions are present in the model. We then analyze how results change as a function of model complexity, 

starting with a model which is completely characterized by interactions. This allows us to study how interactions 

and correlations interfere. This approach gives us the possibility of studying the relationship between -

additivity and interactions. We recall that interactions are defined based on Sobol’ function decomposition and 

they can be appreciated by the sensitivity indices (Sobol’ [3]): 

  (4).  
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If a model does not entail interactions and the parameters are independent, then all the m...,j,iS  are null and the 

first order sensitivity indices sum to unity (∑
=

=

n

1i

i 1S .) One says that the model is additive. Similarly, if 

1δ

n

1i

i =∑
=

 holds, we say that -additivity holds. Considering different model structures, we explore what are the 

conditions under which a model is -additive and analyze whether the same conditions assure additivity of 

variance-based sensitivity results. We are then left with investigating the effects of dependencies on -additivity. 

Finally, we apply these procedures to a model for the stability of a chemical reactor, whose global sensitivity 

analysis has been discussed in Saltelli et al [7] for the independent input case. 
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This paper presents a new screening method which takes up the principles of Morris’ method, without 

the “one at a time” (OAT) constraint. We will show why, in particular cases, OAT designs should be avoided. 

 

The increasing use of computer experiments has gone along with a larger number of model parameters 

to analyze and control. In high dimension, it is uncommon that the number of computer simulations is sufficient 

to correctly characterize the model. The usual procedure is then to reduce the number of dimensions by 

considering the group of factors that are known to be the most influent. To this end, screening techniques are 

used to “prune” models at a low computational cost. 

 

Screening is a preliminary phase in the study of a computational model. Typically a metamodel is 

estimated in order to perform studies that would not be possible directly on the simulator: sensitivity analyses, 

optimization… Reducing the number of dimensions of the metamodel decreases its variance of estimation, 

thereby improving its quality. 

 

Among the screening methods, the method of Morris [2,3] is often applied when a reasonably large 

number of simulations can be done (more than 5p simulations, where p is the number of factors). Although this 

number is very low, it is high compared to other screening methods (for example, supersaturated designs that 

require less than p simulations). The method of Morris has two main advantages. Firstly, in most cases all 

influent factors are screened, and this thanks to its “high” computational cost. Secondly, it provides very rich 

information: in addition to the main effects it gives indications on nonlinearities and interactions. 

 

In this work, we consider that screening has exhausted the simulation budget. We then have no other 

choice than estimating the metamodel with the screening design points. We note ),( iii vux


  the design 

points, with iu


 and iv


 the influent and the non influent factors, respectively, and )( ii xfy


  the responses. 

We are seeking a metamodel g such that iii ugy  )(


. This means that the orthogonal projection of the 

original points onto the subspace formed by the influent factors is considered. 

 

Figures 1 and 2 represent two screening designs in 2D. The first is a well known Morris’ OAT design 

[2,3]. The second is the “simplex screening design” which we introduce in this paper. The projections of the 

points on the u-axis are represented in dotted lines. 

 

u

v

 u

v

 
Figure 1 : Morris’ OAT design Figure 2 : simplex screening design 

 

In figure 1, vertically aligned points superimpose onto each other through projection. For a regression on the 

first dimension, this leads to a loss of information. It is not a loss of points: all the points will be used for the 

regression, but one projected point could match several points of the design. In figure 2, the projections give a 
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better coverage of the u-axis. For the same kind of regression, uncertainty upon the regression will be lower 

with the design of figure 2 than with that of figure 1. This illustrates why the simplex design can be more 

informative in projection than Morris’ OAT. 

 

The simplex design of experiments does not have a structure as rigid as that of Morris, but it makes it 

possible to calculate as efficiently the same sensitivity indices. Indeed, one elementary effect per factor can be 

computed for each simplex by interpolating a first order polynomial (Snee and Marquardt [5]): 





p

i

ii XddY
1

0  

The elementary effects are given by the coefficients di. Then, the sensitivity indices * and  are calculated 

according to the Morris’ method (Campolongo [1]): 
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*
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where the mean and the standard deviation are computed on the population of simplexes. The simplex screening 

method generalizes the Morris’ OAT design since it is a particular case of a simplex design. 

 

As the simplex design is used for metamodel estimation and because it has a reduced number of points, 

it is important that it covers the space well, i.e. it should be a space filling design (see Santner et al [4]). In 

recent work, Campolongo et al. [1] have proposed a method for improving the sampling strategy in Morris’ 

designs. It consists in maximizing the distances between the OAT trajectories. We use this method without 

modification in the simplex sampling strategy. 

 

The simplex screening method is compared to Morris’ OAT on several standard test cases (Morris 

function, Sobol g-function…). Monte Carlo validation shows that: 

 for screening, the simplex designs give as good results as Morris’ OAT: the two methods identify 

the same set of influent factors. 

 for metamodel estimation, the simplex designs are better than Morris’ OAT: the metamodel 

residual variance is smaller with the former than with the latter. 

 

A study on an industrial simulator from petroleum exploitation will also be shown. Given 51 initial 

factors, only 255 simulations are permitted to: 1. identify that only ten factors were influent, and 2. estimate a 

kriging metamodel upon the subset of influential factors. 

 

The simplex screening method also makes it possible to perform a screening with any kind of design of 

experiments. Indeed, for estimating the sensitivity indices, it is sufficient to be able to extract some simplexes 

from the design. This strategy yields worse results than with a specific design (like regular simplexes), but it 

makes it possible to carry out a screening on existing databases of simulations without having to deal with a 

metamodel. 
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Introduction 

 

This work addresses the problem of global sensitivity analyses of numerical models when some input 

parameters  are not scalar but functional: (x) is a one or multi-dimensional stochastic function where x can be 

spatial coordinates, time scale or any other physical parameter. This work focuses with models which depend on 

scalar parameter vector p and use some stochastic processes simulations or random fields (x) during their 

running. The output value Y of the computer code depends on the realizations of these random functions. For 

example, the oil reservoirs production evaluations depend on geostatistical simulations of the heterogeneous 

geological media (Zabalza-Mezghani et al. [7], Ruffo et al. [4]), the environmental assessment on soil models 

use spatially distributed maps affected by random errors (Tarantola et al. [6]), the thermo-mechanical behaviour 

of the fuel rod under nuclear irradiation depends on temporal parameters modelized as stochastic processes 

(Iooss and Ribatet [1]), … These models are typically non linear with strong interactions between input 

parameters. Therefore, we concentrate our methodology on the estimation of the variance based sensitivity 

indices; that is, the so-called Sobol indices (Sobol [5]). 

To deal with this situation, a first natural approach consists in the discretization of the input functional 

parameter (x) or its decomposition in an appropriate basis of orthogonal functions. Then, for all the new scalar 

parameters which represent (x), sensitivity indices are computed. However, in the case of complex functional 

parameters, this approach seems to be rapidly impracticable as these parameters cannot be represented by a 

small number of scalar parameters (Tarantola et al. [6]). Moreover, when dealing with non physical parameters, 

sensitivity indices interpretation would be quite difficult. Indeed, most often, physicists would prefer to obtain 

one global sensitivity index concerning (x).  

In this work, four strategies to resolve this problem are presented. The advantages and drawbacks of each 

approach are discussed and some applications will be shown during the conference presentation. 

 

1. Sobol indices by Monte Carlo calculations. 

 

To resolve the problem of correlated input parameters in the Sobol indices calculations, Jacques et al. [2] 

have proposed to use the multi-dimensional sensitivity indices (Sobol [5]): each group of correlated parameters 

is considered as a multi-dimensional parameter. The simple Monte-Carlo algorithms (Sobol [5]) can then be 

used to calculate the different Sobol indices (first order, second order, …, total). In our case, this solution is 

fully applicable by considering the input functional parameter (x) as an unique input multi-dimensional 

parameter. However, it is supposed that (x) is not correlated with any other input parameters. Moreover, the 

calculation of Sobol indices by the simple Monte-Carlo method requires more than thousand model evaluations 

for one input parameter. In complex industrial applications, it is often unrealisable. 

  

2. Using an intermediate “trigger” parameter governing the random function simulation. 

 

Tarantola et al. [6] have proposed another solution by introducing a scalar input parameter  ~ U[0,1] 

governing the simulation of the random function.  For each sample simulation, if  < 0.5, the functional 

parameter (x) is fixed to a nominal value 0(x) (for example the mean <(x)>); if  > 0.5, the functional 

parameter (x) is simulated. Therefore, the sensitivity index of  quantifies the influence of the random function 

on the model output variable.  Contrary to the previous case, various sensitivity analysis methods can be applied 

(regression, FAST, Sobol, …). However, as the previous method, it also requires the use of the computer model 

to perform the sensitivity analysis. Moreover,  reflects only the presence or the absence of the stochastic errors 

on 0(x), and the term Var[E(Y|)] does not quantify properly the contribution of (x) to Var(Y). 

 

3. Using a metamodel. 

 

To perform a variance-based sensitivity analysis on long running time model, some work propose to replace 

the computer code by an approximate mathematical function, called a metamodel (Ruffo et al. [4]). For 

metamodels with sufficient prediction capabilities, the bias due to the use of the metamodel instead of the true 

model is negligible. Several choices of metamodel can be found in the literature: polynomials, splines, Gaussian 
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processes, neural networks, … Therefore, a first solution would be to fit a metamodel including the multi-

dimensional scalar parameters representing (x) (i.e. its discretization or its decomposition in an appropriate 

basis). However, this seems to be impracticable due to the potential large number of scalar parameters. A second 

solution consists in replacing the continuous parameter  by a discrete parameter ’ =1 > 0.5 , which can 

correspond to the scenario parameter of Ruffo et al. [4] (where the number of geostatistical realizations is finite 

and fixed, and where each different value of the discrete parameter corresponds to a different realization). 

However, the situation differs in our context; as the previous method, the term Var[E(Y|’)] does not quantify 

properly the contribution of (x) to Var(Y).  

The last solution considers (x) as an uncontrollable parameter and a metamodel is fitted in function of the 

other scalar parameters p: Ym = E(Y|p). Therefore, using the relation Var(Y) = Var[E(Y|p)] + E[Var(Y|p)], it 

can be seen that the total sensitivity index of (x) corresponds to the expectation of the unexplained part of the 

metamodel E[Var(Y|p)]. However, classical parametric metamodels are not adapted to correctly estimate E(Y|p) 

because of the heteroscedasticity of this situation (some examples are shown in Iooss and Ribatet [1]). This can 

cause some misspecifications of the sensitivity indices. 

 

4. The joint modeling approach 

 

Zabalza-Mezghani et al. [7] have proposed a solution by using a theory developed for experimental data: 

the simultaneous fitting of the mean and the dispersion by two interlinked generalized linear models (McCullagh 

and nelder [3]).  This approach, called the joint modeling, has been recently extended by Iooss and Ribatet [1] to 

non parametric models. This generalization allows more complexity and flexibility while fitting the data. They 

propose to use generalized additive models (GAMs) based on penalized smoothing splines. The GAM allows 

model and variable selections via quasi-likelihood function, statistical tests on coefficients, graphical display, … 

Its restriction, compared to other complex metamodels stands in the additive effects hypothesis. 

Therefore, two metamodels are obtained: one for the mean component Ym = E(Y|p); and the other one for 

the dispersion component Yd = Var(Y|p). The sensitivity indices of p are computed using Ym with the standard 

procedure, while the total sensitivity indice of (x) is computed from E(Yd). Using the explicit formula on Yd 

and the associated regression diagnostics, qualitative sensitivity indices for the interactions between (x) and the 

scalar parameters of p can be deduced. 
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For many areas of interest, models of complex systems can be taken to have the form of a deterministic mapping 

from a set of n inputs to one or more output(s) (Figure 5). The outputs can be considered separately, so that for 

each output Yk there is a map 

 

 

 

Usually, the input-output mapping is not available in explicit form but can be evaluated numerically for any 

given inputs.  

  Global sensitivity analysis aims to rank the inputs X1,…,Xn according to the degree to which they influence the 

output, individually and conjointly. Here ‘inputs’ may also refer to intrinsic model parameters whose influence 

on the output is to be determined, as in Fig 1B. This type of global sensitivity analysis is commonly performed 

in a probabilistic manner by evaluating the model for multiple sets of randomly and independently selected 

input values drawn, for instance, from uniform distributions over suitable intervals. The output, being a function 

of the randomised inputs, thus also becomes a random variable. If the inputs are sampled independently, the 

variance of the output distribution can be decomposed into contributions by individual inputs, pairs, triplets, and 

so forth. This procedure is well known in statistics as ‘analysis of variance’ (ANOVA) (e.g. [1]), and several 

authors have contributed to improving its computational efficiency for sensitivity analysis (e.g. [2] and [3]).  

Rather than analysing the variance of the output distribution, we take a different route, measuring output 

uncertainty in terms of Shannon’s entropy [4]. Our starting point is the concept of the ‘communication channel’ 

[5], which enables us to view the model as a transmitter of information between inputs and outputs (Fig 1B).  
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Figure 5. A complex system with multiple inputs and outputs. This is a typical situation in systems biology. For 

instance, pathway models (A) are described by sets of coupled non-linear ordinary differential equations 

(deterministic or stochastic). Input-output relations can only be elucidated by numerical evaluation of the 

system output, e.g. a flux, for various configurations of the input parameters. Global sensitivity analysis aims to 

determine the degree to which these inputs control the output, and how they interact. In most applications, the 

input-output mapping is non-linear and not given in closed form; hence the system is a ‘black box’ (B). 

 

 

The mutual information of two variables is a quantity that measures their mutual dependence [5]. 

Determining the mutual information I(Xi;Y) between random sampling sequences of individual inputs Xi and 

their output counterpart can elucidate first order input-output relations. Mutual information provides a general 

measure of association that is applicable regardless of the shape of the underlying distributions and – unlike 

linear or rank order correlation – insensitive to non-monotonic dependence among the random variables. Further 

insight can be obtained by unravelling conditional dependencies among the system inputs. We here define novel 

and general sensitivity measures of second and higher order by evaluating input correlations induced by 
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conditioning on the output. To our knowledge, only a first-order information-based analysis has been discussed 

in the literature to date [6; 7, pp. 402 – 407]. 

 As does variance, the output entropy H(Y) quantifies the variability of a distribution, but differs from it in 

that, while variance essentially assumes Gaussian distributions, the entropy is more general. We therefore 

further develop an information-theoretic framework for the sensitivity measures thus derived, based on the 

observation that their sum is bounded from above by the output entropy H(Y). From this viewpoint, the 

(information-theoretic) sensitivity indices quantify the amount of output uncertainty removed by the knowledge 

of individual inputs and combinations thereof. 

 Sensitivity analysis of this kind is also an analysis of the total mutual information I(X1,…,Xn; Y), which 

subsumes all input-output associations including interactions. The resultant summation theorem for the 

sensitivity measures is an information balance in which the sum equals I(X1,…, Xn; Y). Although in practice only 

effects of up to third or fourth order can easily be calculated explicitly, the joint impact of all higher order terms 

is provided by the remaining difference to I(X1,…, Xn; Y). We can therefore assign credit or influence fully to all 

the parameters of a system over a wide range of operating conditions.  

For all variance-based approaches, the absence of input correlations is a critical prerequisite for the 

uniqueness of the variance decomposition [8, 9]. As will be demonstrated, in our methodology independent 

inputs merely simplify the analysis. If input correlations exist (e.g., due to non-orthogonal sampling), their effect 

can easily be taken into account. We apply the methodology successfully to a model of the NFκB signaling 

pathway and thereby define how to modify its behaviour to provide a designed maximum effect. 
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 The small random disturbances of nonlinear  dynamical system can decisively affect its behavior and 

lead to rich variety of regimes. Consider stochastic system   )(),( yyfy   . Here y is n-dimensional 

vector,  f   is vector-function,   is real parameter,  is  n-dimensional standard Wiener process,   is n x n – 

matrix disturbances function,  is a small parameter (noise intensity). The most general probabilistic description 

of  this forced  system is given by the Kolmogorov-Fokker-Planck equation.  As a rule the main interest is 

connected with the regime of stochastic auto-oscillations steadied in dynamic system. Analytical research of 

stationary distribution density (y,) is possible only for 1-dimensional dynamical systems and in some 

infrequent cases for 2-dimensional systems. For 3-dimensional systems the construction of numerical solution of  

Kolmogorov-Fokker-Planck equation is connected with significant computational difficulties. 

The case of steady rest point is widely discussed in the literature for stochastic dynamics and is 

fundamentally developed. The main attention in presented paper is devoted to the limit cycle. It is supposed that 

the deterministic system ),( yfy  has T-periodical solution (t) with corresponding exponentially stable 

phase curve (cycle ).  It means that value of deviation (y) of the forced trajectory state y from the cycle  

tends exponentially to zero as time increases. External random perturbations force the trajectory of dynamical 

system to leave the deterministic orbit and form some stochastic bundle around it. Empirical study of cycle 

stochastic sensitivity based on direct numerical simulations is very difficult due to considerable time 

consumption and computational resources.  

1. Stochastic sensitivity function 

In presented work, the method based on quasipotential function ),(lnlim)( 2

0



yyv


 is given. 

This function is an asymptotic of stationary density (y,). Qausipotential has been actively used in last years 

for stochastic dynamics problems research and appeared in papers of  Wentzell A.D. and Freidlin M.I. [1]. With 

the help of first approximation of quasipotential v(y) in a small vicinity of cycle  the stationary density can be 

written in following form of normal distribution [2, 3]: 
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where “+” means pseudo-inversion. Function ) is so-called stochastic sensitivity function (SSF). SSF 

characterizes a dispersion of the intersection  points of random trajectories  with hyperplane orthogonal to cycle 

 at the point   . SSF describes a sensitivity of the cycle to the small random disturbances. Using SSF one 

can successfully research different phenomena connected with the influence of random perturbations on the 

limit cycle without empirical modeling.  

The stochastic sensitivity matrix ) is singular  (all distribution points are concentrated in one 

hyperplane). It is convenient to search for a function )  in parametrical  form. The solution (t) connecting 

the points of cycle  with points of an interval [0, T)  gives the  natural parametrization ((t)) = W(t). Then the 

following system, consisting of linear matrix differential Lyapunov equation and two corresponding conditions, 

can be written as 
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r   

This system has an unique solution [2, 3]. Corresponding numerical algorithms for calculating of this solution 

were suggested in [3].  

Let us consider the three-dimensional case (n = 3). Then spectral decomposition of SSF can be written 

in the following form: 
TT vvvvtW 222111)(   , where 1, 2 are eigenvalues and v1, v2  are corresponding 
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normalized eigenvectors of  matrix W(t). Scalar analysis of  3D-cycle stochastic sensitivity is based on research 

of two scalar functions 1(t) and 2(t). 

2. Geometrical description of 3D-cycle stochastic sensitivity 

The constructive way for complete description of cycle stochastic sensitivity is the following. 

Eigenvalues 1, 2 and corresponding normalized eigenvectors v1, v2 of matrix W(t) specify in normal plane 

(t) (build in some point on the cycle orbit) some confidence ellipse Y(t).  This ellipse with some chosen value 

of  fiducial probability defines  in plane (t) a confidence domain for intersection points of stochastic bundle. 

These ellipses specify on  the system phase space around the cycle some torus , which defines a  confidence 

domain for stochastic cycle.  

This torus  plays  a role of a simple 3D-model for  stochastic cycle. Visualization of this torus gives 

detailed and evident description of  stochastic cycle orientation and form and fully characterizes its stochastic 

sensitivity. In the paper, the following algorithm for constructing of confidence torus is presented:  

 value of SSF is calculated for each of  base points. Using eigenvalues 1, 2 and eigenvectors v1, v2 

of SSF matrix confident ellipse Y is constructed; 

 base points on ellipses are chosen;  

 with the help of triangulation the carcass of torus is constructed. Triangles apexes are base points 

of ellipses. Using normal vectors to triangles directing vectors to each apex are build; 

 torus carcass and directing vectors are used to create the 3D-scene image. Realized numerical 

algorithm of enveloping of torus surface relies on implementation of graphic library OpenGL and 

uses Gouraud smooth shading method. 

3. Stochastic sensitivity analysis of Roessler system 

Method of stochastic sensitivity analysis based on SSF was applied for researching different 2-

dimensional and 3-dimensional dynamic models [2 - 4]. In this paper analysis for stochastically forced Roessler 

system  















3

2

1

)(

)(













xzz

yxy

zyx

 , 

is demonstrated . Here   = 0.2 ,   (0.4 ; 4.2) . 

The designated parameter interval is period doubling bifurcation zone for Roessler system. While 

parameter  changes on this interval, stable limit cycles double their period. At 4.2 system changes its state 

and undergoes from order to chaos. 

Deterministic cycles of Roessler system and random trajectory bundles around them are examined. 

With the help of SSF the stochastic sensitivity of cycles is researched in details. Scalar analysis is performed. 

Good coincidence with results, based on direct numerical simulation, is achieved. An exponential growth of 

stochastic sensitivity for period doubling bifurcation zone is found. The value of growth coefficient is obtained. 

For some different values of parameter  confidence tori are built to demonstrate the possibilities of geometrical 

description of stochastic sensitivity. The modeling of Roessler system torus under raising of noise intensity is 

performed. 

Achieved results show that SSF is a useful analytical tool in researching thin phenomena observed in 

stochastically forced systems with limit cycles. Geometrical description of stochastic cycle sensitivity is 

demonstrated. 
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Complex decision situations require the consideration of technical, economic, ecological, socio-

psychological as well as political aspects. Approaches from Multi-Criteria Decision Analysis (MCDA) can help 

to take into account various incommensurable aspects and subjective preferences of the decision makers and 

thus contribute to transparency and traceability of decision making processes (see e.g. Geldermann et al. [10]; 

Belton and Stewart [1]).  

An important and challenging area of applying multi-criteria methods is nuclear emergency and remediation 

management involving various stakeholder and expert groups in the decision making process with diverse 

background knowledge and different views, responsibilities and interests. Hence, the focus of this research is to 

highlight the role of MCDA in nuclear emergency and remediation management on the basis of a hypothetical 

case study.  

Providing methods to structure and analyse decision problems by means of attribute trees and to elicit the 

relative importance of criteria in such a tree, multi-attribute value theory (MAVT, see Keeney and Raiffa [12] 

for an overview) has proven to suit for application in the later phase of nuclear emergency management (see 

Geldermann et al. [10]; Hämäläinen et al. [11]; French [8]). In MAVT, preferential information is modelled by 

weighting factors (i.e. inter-criteria comparisons) and value functions (i.e. intra-criteria preferences). 

However, the uncertainties that can arise in a decision making process are often underestimated. The 

occurring uncertainties can be classified in many different ways, see for example Mustajoki et al. [13]; Bertsch 

et al. [4]; French [6]. According to their respective source, a distinction can be made between “data 

uncertainties” (uncertainties of the input data to a model), “parameter uncertainties” (uncertainties related to the 

model parameters, such as the weighting factors of a MCDA model) and “model uncertainties” (uncertainties 

resulting from the fact that models are ultimately only simplifications/approximations of reality, see French and 

Niculae [9]).  

The modelling of the decision makers’ preferences is a crucial part in any multi-criteria analysis. In this 

paper, special emphasis is placed on handling the uncertainties associated with these preferential parameters. 

While methods such as SWING and SMART (see Von Winterfeldt and Edwards [14]; Edwards [5]) seek to 

support decision makers (or their advisers) in eliciting appropriate weights for the different criteria in MAVT by 

allowing the assignment of weight ratios instead of direct weights, the most difficult problem is often the 

determination of precise weights or weight ratios. Experiences gained from conducting scenario-focused 

decision making workshops and also training courses on the use of decision analysis, have shown that the 

participants do in general appreciate the benefits from applying MCDA but that they need more guidance. They 

were often unsure about an exact quantification of the modelled preferences. Hence, an appropriate handling of 

the so-called “preferential uncertainties” is of particular importance. 

Classical one-dimensional sensitivity analysis can help to assess the robustness of a decision with respect to 

variations of preferential parameters (e.g. a weight). However, the major drawback of the procedure is that it is 

limited to varying one weight at a time. Considering the impact of the simultaneous variation of several weights 

of a decision model by allowing the assignment of weight intervals instead of precise values could contribute to 

facilitate the weight elicitation process. Similarly, investigating the impact of the simultaneous variation of the 

value functions’ shapes can facilitate the process of determining appropriate value functions for each attribute, 

see Bertsch et al. [2]. Besides varying the value functions’ shapes it is also interesting to investigate the effect of 

varying their domains’ boundaries. In practice, the boundaries are often defined by the minimum and maximum 

scores actually achieved by the different alternatives (with respect to the considered attributes). By following 

this approach, theoretically possible better or worse outcomes are neglected. However, the estimation of 

reasonable values for these theoretically possible boundaries is a difficult task. An analysis whether or not the 

variation of the boundaries has an impact on the results can help a decision making group to cope with this task.  

In general, the problem of preferential uncertainties is closely interconnected with the field of group decision 

processes (see e.g. Zhang [15]). We think that it could be easier for groups to agree on parameter ranges 

(intervals) instead of precise values. Furthermore, it should be noted that preferences may certainly vary 

according to value systems that are influenced by culture which, in particular, has to be accounted for when 

decision groups involve persons with different cultural backgrounds. Using approaches for sensitivity analysis 

that allow to find out whether or not the variation of certain preference parameters has an impact on the ranking 

of the alternatives, disagreements which do not affect the results can be eliminated from debate and the group 

can focus on discussing the differences that do matter in terms of the results (Bertsch et al. [3]; French [7]). 
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In this paper, a Monte Carlo approach is presented that allows to perform multidimensional sensitivity 

analyses for the different preferential parameters. The main objective is to explore the sensitivity of the results 

of decision processes to simultaneous variations of these subjective parameters and consequently to contribute 

to a facilitation of the preference modelling process by comprehensibly visualising and communicating the 

impact of the preferential uncertainties on the results of the decision analysis. 
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Gas pulsation in the suction manifold of reciprocating automotive compressors is a common problem. These are 

mainly caused by the periodic impact of the valve against the seat and because of the unbalance due to piston 

kinematics. The focus of this research is to initially perform a parametric based study and utilize Uncertainty 

Analysis techniques to optimize the compressor valve design by taking into account the inherent variability in 

the operational and design simulation parameters. This research is a continuation of earlier work, where an 

entire simulation model for a multi-cylinder automotive compressor was developed to predict the gas pulsations 

in the suction manifold. From these studies it was determined that the main factors that contribute towards gas 

pulsations are the reed valve, the net pressure and its distribution across the valve, mass flow rate, and certain 

operational parameters.  

 

First, a parametric study will be done of the different important geometric parameters of the 

compressor valve together with some material and stiffness properties using Finite Element Analysis Software 

and Matlab. The geometric dimensions of the valve are based on a number of parameters that need to be 

optimized keeping in view the over all geometric constraints of the suction manifold. The main purpose is to 

increase the mass flow rate and to reduce the low frequency noise in the suction manifold. Second, important 

factors that have a significant impact on the net pressure acting and its distribution across the valve will be 

considered. The pressure distribution can have a significant effect on the valve opening time and consequently 

on the mass flow rate resulting in higher gas pulsations. The exact way in which the pressure is distributed 

across the valve is not known but different pressure profiles will be assumed in order to analyze the response. 

Third, certain operating parameters will be varied based on probability density functions. The objective here will 

be to show how the mass flow rate profile affects the gas pulsations in the suction manifold.  

 

The gas pulsations in the suction manifold are highly dependent on the proper valve design. The 

estimated gas pulsation obtained from the above methods will be quantified in terms of a distribution and the 

affects on the output distribution by changes in valve geometry will be explained. The results will also be 

compared with the pressure pulsation obtained from the experimental data. It will be shown that a good 

compressor valve design can be achieved by parametric study of the valve geometry profile and could be easily 

combined with other compressor design and operating parameters using uncertainty and sensitivity analysis to 

better predict the gas pulsation behavior in the suction manifold.  
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State-transition models are employed to trace future trends of risk factors and disease prevalence rates within 

populations [1,2]. The reliability of these models is based on the validity of the assumptions made in the model 

and on the accuracy of the input data they require. Uncertainty and Sensitivity Analysis should be performed to 

assess the reliability of the results and to detect the input variables that contribute most to the output variability. 

Often the number of state-transition model input variables is so huge and the computer code in which they are 

written required running-time that are so large that not all the methods to perform uncertainty and sensitivity 

analysis are practically available. Because of that, this kind of analysis is rarely applied to state-transition 

models. Here we describe how to deal with these limitations in practice. 

We first present the RIVM Chronic Disease Model [3] that is a multistate-transition model describing the trends 

of several risk factors and of the related diseases within the Dutch population. It is also an important tool for 

health economics [4,5] but our analysis will focus only on its epidemiological applications. 

The model involves thousands of input factors depending on the choice of the output of interest, and each model 

run is quite time consuming. For these reasons any sophisticate and complex uncertainty and sensitivity analysis 

cannot be performed on the Chronic Disease Model output without having performed before a screening method 

to exclude all non influential input variables from the subsequent analysis. 

Our outputs of interest will be the prevalence projections of never smokers/smokers/former smokers and of 

several diseases related to smoking such as lung cancer and coronary heart disease within the Dutch population 

older than 15 years. 

The input factors we decided to include in the analysis are the prevalence rates of smokers, the starting rates, the 

quitting rates and the relapse rates (that are the rates governing the transitions from never smokers to smokers, 

from smokers to former smokers and from former smokers to smokers respectively) and the relative risks for all 

cause mortality and for disease specified by risk factor class (smoking state). All these input are specified by 

gender and within gender by five-years age classes. 

We performed a simple one-at-a-time experiment and the more informative Morris’s OAT design [6,7]. We will 

compare the results and point out some difficulties in dealing with very different kinds of input factors like those 

we investigated. Since all input factors are age dependent and specified by gender and the outputs are functions 

of time, these sensitivity analysis methods prove to be also very effective methods to detect possible errors and 

to check the coherence of the model structure. 

We also suggest a possible way of performing sensitivity analysis to quantitatively attribute the output 

uncertainty to the uncertainty in the input factors as a further step to assess the reliability of the model results. 
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Chemical models of Titan's ionosphere are presently involving hundreds of reactions, and the ion mass spectra 

obtained on site by the Cassini spacecraft indicate that they are far to be sufficient to explain the observed 

molecular growth [1]. It is thus unavoidable that the complexity of the models will increase. In parallel, there is 

a strong demand for reduced chemistry modules to include in 2D or 3D atmospheric models.  

In a first time, we focussed on the reaction database used to describe bimolecular ion-molecule reactivity. Our 

target observable was the ion mass spectrum with it's 90% confidence interval, as generated by Monte Carlo 

uncertainty propagation with the full chemistry model. We wished to estimate how many reactions, among the 

582 presently included in the database, were necessary to reproduce this mass spectrum without significative 

alteration (Fig. 1). 

 

Figure 3: Ion mass spectrum simulated with the full reaction database, with uncertainties resulting from 

bimolecular reactions parameters (rate constants and branching ratios). 

 

We compared two methods to reduce the reaction scheme:  

5. A brute-force screening method: we systematically subtracted the reactions in the chemical network and 

checked whether the resulting mass spectrum reproduced the target observable. All the reactions which, 

when suppressed, led to a nominal prediction out of the 90% confidence interval of the target were kept in 

the model.  

6. A global sensitivity analysis method, based on input-output correlations, to identify major reaction paths  

leading to the target mass spectrum. All reactions having rank correlation coefficients below a chosen 

threshold with the observed mass peaks were discarded. 

A similar efficiency was found in both cases, reducing the initial chemical network by a factor of 5-6: 95 

reactions with the brute-force method versus 117 reactions with the global sensitivity analysis method (Fig. 2). 

However, notable discrepancies were observed in the minimal lists of reactions produced by both methods. 

Moreover the brute-force pruning method appears to be dependent on the screening order: substantially different 

reduced lists were obtained according to the starting point of the screening process. This might be due to non-

linearities and/or compensations in the network bifurcations when subtracting the reactions one-by-one. At the 

opposite, the global analysis, although slightly less effective than the brute-force method, is probably more 

adequate for such a non-linear and complex chemical network. 
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Figure 4: Left: “full” ion-molecule reactions network (582 reactions); right: reduced network after global 

sensitivity analysis, reproducing the target ion mass spectrum within uncertainties (117 reactions). The lines 

join ions related by an ion-molecule reaction; neutral species are not specified. 
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The mathematical representation of natural and industrial systems frequently requires the use of time-dependent 

spatially distributed models. Although differential methods are intrinsically local, they are perfectly suited for 

some settings and may prove very informative. Suppose that the transformation between the independent 

variables x = (x1, x2, ..., xn) and the dependent variables y = (y1, y2, ..., ym) is represented by a function f : Rn  

Rm. The response to be analysed can be a scalar but the study of a vectorial response tend to increase the 

understanding of the transformation. When function f is linearized at the given point of the input space (defining 

a trajectory in the model phase space), the partial derivatives are organized in the m × n Jacobian matrix J. 

For instance, if the vector y accounts for the temporal evolution of an output variable of interest, each column of 

J is the result for all the time steps composing the response of an infinitesimal perturbation on one of the input 

parameters xi. Conversely, each line of J can represent the contribution of the different parameters xi (spatially 

distributed) on an aggregated response yj. While one can propose a physical interpretation for the lines and/or 

columns of the Jacobian matrix, a very interesting view angle is provided by its singular value decomposition 

(SVD). This factorization is widely used for the analysis of linear ill-posed problems [5] and its potential 

extrapolation to nonlinear systems is spreading in various disciplines (ex. [1], [3], [6]) . When applied to the 

Jacobian matrix of the transformation, it provides very relevant information for the analysis and control of the 

system under study. The first singular vectors in the input space describe the sub-space from the original control 

space maximizing the spread of the outputs, in the output space they identify the output variables really 

informative for the estimation of the model control variables. Together with the singular value spectrum, they 

are valuable elements to assess and enhance the sensitivity and identifiability of the independent variables. 

Going back to the illustration mentioned previously, if y accounts for the temporal evolution of an output 

variable and if a given spatially distributed parameter is composing the vector x, the parameters really 

influencing the response (spatial location) and the measurements really constraining the parameters (temporal 

location) are identified. 

 

Although different techniques can be employed for the evaluation of the Jacobian matrix, algorithmic 

differentiation is very efficient in providing accurate derivatives. Tremendous advances have been made in this 

domain Griewank [4] and consequently the code based approach is facilitated by the advent of powerful 

automatic differentiation (AD) engines (see http://www.autodiff.org). The derivatives computed by means of 

algorithmic differentiation are accurate to the machine precision. Considering the computer code implementing 

the direct model as a concatenated sequence of instructions, algorithmic differentiation is based on a rigorous 

application of the chain rule, line by line. The application of the chain rule from the inputs to the outputs of the 

function is denoted as the forward mode of AD whereas the reverse mode operates from the outputs to the 

inputs. Because the computational cost of the reverse mode (discrete equivalent of the adjoint state method [2] 

from optimal control theory) is independent from the dimension of the input space, for vector valued response 

functions, it can be shown that when the ratio between the dimension of the input space and the dimension of the 

output space is greater than one, the reverse mode is more efficient in computing the Jacobian.  

 

Independently from the curse of dimensionality high-dimensional input spaces can be investigated while the use 

of sampling based approaches would imply a prohibitive computational cost. The described methodology is 

applied an catchment scale hydrological model representing the transformation of rainfall into runoff. Using the 

information provided by the SVD of the Jacobian matrix, it is shown that adjoint sensitivity analysis provides an 

extensive insight into the relation between model parameters and the hydrological response and enables the use 

of efficient gradient-based optimization techniques. 
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1. Introduction 

 

Nowadays, the need to treat both epistemic and aleatory uncertainty in a unified framework is well 

recognized [1]. One method to do so is to mix probabilistic convolution (for aleatory uncertainty) and fuzzy 

calculus (for epistemic uncertainty). Existing propositions either concern simple models [2] or are 

computationally very costly [3] (a luxury not always affordable, especially in nuclear safety, where models can 

be very complex). Here, we propose a numerical treatment of such methods, based on Monte-Carlo sampling 

technique, which greatly reduces the computational costs and can be applied to complex models. Moreover, 

using well-known results from order statistics [4], we propose to integrate the notion of numerical accuracy to 

our results. Our proposition mainly consists in setting some decision step before the propagation is done, rather 

than after it has been done. Section 2 recalls theoretical basis of the propagation technique used here and 

discusses previous practical solutions proposed to put this method in practice. Section 3 explains our 

propagating method (called the RAndom FUzzy method, or RaFu) and how it is applied. The RaFu method, 

implemented in SUNSET software for uncertainty analysis, is currently used and developed at IRSN 

 

2. State of the art 

 

Let us consider a set of K parameters X1,…,XK tainted with aleatory uncertainty (i.e. Xi i=1,…,K takes a  

random value and is modelled by a probability distribution pi, or equivalently by a cumulative distribution Fi), 

and a set of L parameters XK+1,…,XK+L tainted with epistemic uncertainty (i.e. Xi i=K+1,…,K+L has a 

deterministic value which is imprecisely known). Let M(X1,…,XK, XK+1,…,XK+L) be the mathematical model of 

interest depending on our K+L uncertain parameters. 

The aleatory uncertainty of a parameter X is faithfully modelled by a probability distribution p. Epistemic 

uncertainty, on its side, is more faithfully modelled by intervals encompassing the imprecisely known true value 

of a parameter. Nevertheless, we often have more information than just a minimal and a maximal values (e.g. an 

expert can give intervals with different confidence levels). Possibility distributions are mappings π : ℝ  [0,1] 

that can be seen as a collection of nested confidence intervals (thus extending the notion of intervals), which are 

the α-cuts [xα,xα] = {x, π (x) ≥ α } of the distribution π. The degree of confidence that the interval [xα,xα] 

contains the true value of the parameter X is then 1- α. Thus, the K first parameters of the model M are modelled 

by probability distributions pi, while the last L are modelled by possibility distributions πi 

Parameters are then propagated through the model. Guyonnet’s proposition [5] (which makes no assumption 

about the complexity of the model) is to first propagate the K first parameters through usual Monte-Carlo 

simulation, thus getting N probabilistic samples (eventually integrating some information about correlation by 

usual techniques [6]), and then to propagate the L last parameters by using fuzzy extension principle for each N-

uple. By using the fact that the extension principle is equivalent to make an interval computation for each α-cut, 

he proposes to approximate the resulting fuzzy number by making computations over a limited number of α-

cuts. He then gets a collection of N fuzzy numbers Mπi, each of them occurring with probability 1/N. To each α-

cut of the random fuzzy number Mπ corresponds a collection of N intervals Mπi
α = [Mπi,inf

α
 , Mπi,sup

α], from which 

can be built 2 cumulated distributions [Fα,Fα]. To build a summarized representation, Baudrit et al. [3] propose a 

post-processing that consists in taking the mean of the cumulated distributions [Fα,Fα], while Ferson and 

Ginzburg [2] propose to take the double pair [F0,F0] and [F1,F1]. In the two propositions, authors suppose that 

the fuzzy random number is built before giving one of these two representations. This supposition is 

computationally costly. For example, let us suppose that 100 samplings are done on the K first parameters, and 

that for each of them, the corresponding fuzzy number is approximated by taking twenty α-cuts (α = 

0,0.05,…0.95,1). 2100 interval computations are then needed to build the final result.  

In some applications, assuming one can afford so much computations is clearly unrealistic. Moreover, 

although it is proposed in [2] and [3,5] to use numerical sampling for complex models, the question of 

numerical accuracy is not considered in any of them. This is why we propose a method where numerical 

accuracy is integrated and where the decision step is set before the propagation (thus reducing computational 

cost). Let us note that the two post-processing methods mentioned above can be found back with our 

propagating method. 
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3. The Random Fuzzy (RaFu) method 

 

The RaFu method uses the same theoretical framework as the one recalled in section 2. It is designed so that 

both epistemic and stochastic uncertainties are simultaneously sampled and propagated through the model, with 

the aim of building a given response. The main originality of the RaFu method is that this response is pre-

defined by a triplet of parameters (γS,γE ,γA)  specified  by a decision maker (DM) : 

 Parameter γS corresponds to the statistical quantity chosen for modelling the stochastic uncertainty of 

the response 

 Similarly, parameter γE  corresponds to the fuzzy quantity used for modelling the epistemic uncertainty 

of the response 

 Finally, parameter γA measures the desired numerical accuracy on the final result. 

According to the DM values for (γS,γE ,γA), the RaFu method then determines the minimal sample size and 

the nature of the required sampling to build the wished response. Number of calculations is thus reduced to its 

minimal number, in accordance with the DM choice. Moreover, computation cost can be easily evaluated, 

allowing the DM to eventually revise its choices before uncertainty propagation. For example, if the DM want to 

have an upper limit of the response 95% percentile, to be hyper-cautious about epistemic uncertainty (i.e. 

concentrate on α-cuts [x0,x0]) and to have a numerical certainty of 99% to cover the true value, he or she 

chooses the triplet (γS,γE ,γA)=(0.95,0,0.99). By using results from order statistics [4] (an use often quoted as 

Wilks formula [7]), the RaFu method derives the minimal sampling size to satisfy the DM’s choice (in our 

example, 90 calculations) and the nature of this sampling. Let us note that parameters (γS,γE ,γA) are not 

forcefully numbers (i.e. γE can be “every α-cut, from 0 to 1”). 

It is interesting to note that the post-processing methods proposed in [2] and [3] can both be translated in 

term of a decision on parameter γE. The Post-processing of Baudrit et al. [3] can be interpreted as “I want the 

mean pair of  cumulated distribution taken over every confidence degree (i.e. α-cut)  of epistemic uncertainty”. 

The proposal from Ferson and Ginzburg [2] can be translated by “I want the most optimistic and the most 

pessimistic pair of cumulated distributions”.  

Let us get back to the example given in the previous section. With the RaFu method, knowing the desired 

final quantity before propagation allows to reduce computations from 2100 to 100 in the case of Baudrit et al. 

method (100 samples are made, and one random α-cut is chosen each time. This randomised α-cut insures us 

that we converge to the mean, without having to make the propagation for 21 α-cuts each time). In the same 

way, Ferson and Ginzburg’s result can be obtained by reducing computations from 2100 to 200 (here, 2x100 

computations are required, one set of 100 calculations for a fixed α-cut of level 0, and another one for a level of 

1). Detailed algorithm and convergence proof will be provided in the full length paper. 

 

4. Conclusions 

 

Mixing fuzzy calculus with probabilistic propagation to get fuzzy random variable allow one to take into 

account both aleatory and epistemic uncertainties. A limitation of such methods is often the high computational 

complexity, which, according to us, is not always justified in practice. Thus, we propose a method (the RaFu 

method) that brings forward some decision step and can greatly increase numerical efficiency. The final results 

of usual post-processing methods can be found back with the RaFu method, as well as many other possible 

methods. Finally, we have proposed to add considerations about numerical accuracy in the process, an important 

point in sampling processes that is, to our knowledge, almost never mentioned in works trying to cope both with 

epistemic and aleatory uncertainties. 
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The method of Sobol' [6] or the FAST method [1] are classical techniques to compute sensitivity indices 

(see [5] for a wide and thorough review). Although specifically designed to estimate these indices, both require 

many function evaluations. Recently, other approaches based on nonparametric estimation tools have been 

proposed to overcome this computational time problem by working on reduced samples of the inputs. One of 

them is the Bayesian approach of Oakley and O'Hagan [3] which relies on approximating the function with 

kriging ideas. Another one is the method of Da-Veiga, Wahl and Gamboa [2] depending on conditional 

moments estimation through local polynomial techniques. Such nonparametric methods allow to significantly 

reduce the number of function evaluations needed to accurately estimate sensitivity indices. However from a 

statistical point of view, though computationally efficient, these estimators share the problem of a nonparametric 

rate of convergence induced by the use of nonparametric techniques. 

We propose here a new estimator for first-order sensitivity indices which attains the optimal rate of 

convergence. The main idea comes from the work of Laurent [4] on efficient estimation of integral functionals 

of a density. It is based on a Taylor expansion and on the estimation of a quadratic functional. We have followed 

the same scheme and adapted it to the estimation of first-order sensitivity indices which appear to be more 

general functionals of a density than those studied in the work of Laurent. Proofs of convergence and efficiency 

are presented and we underline the notable simplification which appears due to the intrinsic structure of the 

conditional expectation. 

We then present simulation results on analytical examples to compare this approach to the standard techniques 

and to the nonparametric methods aforementioned.  
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In this article, we propose a new performance index adjusted for risk, which allows the comparison of an asset’s 

contributions to a portfolio’s favorable and unfavorable events. This index, called the Extreme Profits and Loss 

Contribution Index (EPLC), in combination with portfolio theory, allows the evaluation of more volatile 

portfolios within the Markcowitz efficiency frontier [1], and thus the recommendation of choosing or rejecting 

portfolios through considering the efficiency of their more volatile assets.  

The EPLC index, defined in monetary terms like the Value at Risk (VaR) [2], considers the two main concepts 

from portfolio theory: the correlation among assets and the risk premium. However the main contribution of the 

proposed index is that it considers simultaneously extreme favorable and unfavorable events. Classical portfolio 

theory deals with a criterion based on average and variance, while VaR methodology considers only one 

percentile of the profit distribution. Thus EPLC provides additional information to the decision-maker.  

The EPLC index is built by using the importance measure (IM)
][

)]|([
η2

YVar

xYEVarx [3-5]. First, a sensitivity 

analysis based on a Monte Carlo simulation is performed to quantify the IM of each asset in both extreme 

favorable and unfavorable regions (extreme profits j and extreme losses j are defined by the user as a 

percentile of the profit distribution). Then the index is built as the ratio of the two IMs weighted by expected 

values of each region, as suggested in [6]. 

 

The use of the EPLC is presented through several examples where assets that explain extreme profits or extreme 

losses have greater participation in losses than in profits, or vice-versa.  
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Sensitivity indexes or Importance measures (IM) are valuable tools that have been used to quantify and 

rank the contribution of a variable of a model with respect to their contribution to a considered measure of 

variability. To quantify the impact of a variable, different IM based on different definitions have been proposed, 

like SRC, SRRC, PCC, PRCC, SPEAR, PEAR or 2 indexes [1-3]. In general, each of the IM takes into account 

different perspectives and the final idea is that variables can be ranked with respect to the impact they have on a 

model characteristic. 

This means that different IM may rank variables in a different order. For example, a component that is 

the most important with the importance measure A may not necessarily be the most important component with 

respect to importance measure B, even if the two IM evaluate or quantify a similar model characteristics [4]. 

In order to produce a single final ranked list, the Decision-Maker (DM) has to combine the results, that 

is, to "fuse" those ranked lists produced by each IM, taking into account his/her preferences such that optimal 

performance is achieved as a result of the aggregation. If IM are considered as experts that judge the behavior of 

each component, then the aggregation problem to be solved can be considered as a Multi Expert-Multi 

component decision Problem. Different authors [5-8] discuss this kind of problem in some other contexts.  

In this paper a result-merging algorithm is proposed based on the Ordered Weighted Averaging (OWA) 

[6]. OWA operators were initially introduced in the area of decision making in order to provide a means for 

aggregating scores or ranks associated to the satisfaction of multiple criteria. To our best knowledge, there are 

no reports on the use of OWA applied to aggregation of multiple IM. An example shows the benefits of such 

combination. 
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Variance-based sensitivity analysis has been extensively discussed for models in which the inputs can be 

regarded as independent, uniformly distributed random variables. In this case, there are generally recognized 

methods for attributing the variance to main effects, higher order terms and random variation. Here, we will 

address the case of nominal inputs for an unbalanced, possibly incomplete, design for a model without 

interaction.  

The correlation ratio 
 

   )|()|(

)|(

xx

x

YVarEYEVar

YEVar


 is a widely used measure of variance-based sensitivity. We 

examine three estimators of this ratio in a simple case—a balanced one-factor design. The three approaches are: 

(i) to estimate each of the three components of the correlation ratio, without bias, from ANOVA mean squares, 

(ii) to estimate the variation between factor levels by use of margin means, and (iii) to estimate the correlation 

ratio by use of the coefficient of multiple determination. We discuss the bias, if any, in the components and 

correlation ratios obtained with the three approaches.  

When dealing with unbalanced designs, we assume that the imbalance reflects an intention to give the 

factor levels different weights, based on logical considerations or a known true representation. Given that 

assumption, we define theoretical measures of variation and combine them into correlation ratios in unbalanced 

one-way designs and multi-way designs for which the number of observations in each cell is proportional to the 

product of the margin numbers. We also show that the component-wise unbiased approach is easily extended 

from the perfectly balanced case to the latter form of imbalance. 

In the case of a truly unbalanced two-factor design, we argue that there are only three sources of 

variation: effects in the first factor, effects in the second factor, and random variation. The imbalance, however, 

makes it difficult to separate these sources, as discussed by Saltelli et.al[1]. The theoretical measures of 

variation must be redefined in order to achieve the desired properties of correlation ratios, i.e. ratios summing to 

one and being non-negative. For the redefined measures, we prove that the technique of solving variation 

components from ANOVA mean squares can not be used, and at the same time we also show that the coefficient 

of multiple determination can not be used for estimating the correlation ratio. We suggest a method for 

estimating variation components by replacing the theoretical factor level effects by their estimators and then 

combine them into estimators of correlation ratios. This design and the suggested method do not require any 

thorough discussion of sampling and integration techniques; the method uses only well-known ANOVA 

calculus and simple calculations based on margin means or estimated effects. We discuss mainly two-way 

designs, but the method can easily be extended to multi-way designs. It is not component-wise unbiased, but the 

bias decreases with increasing sample size. 

The methods discussed have been successfully applied to data sets representing outputs from models of 

road traffic emissions. We have studied a selection of pollutants for gasoline and diesel-powered private cars. 

Emission data were generated by the COPERT III model [2] using a new computer program [3] that can quickly 

compute emissions for each input value over a grid of input combinations. This program can read and write data 

on text files for subsequent use in statistical software. 
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Modelling and simulation are essential techniques in global change research. One of the challenges in this 

research field is the development of integrated models which is being achieved mainly by combining models for 

individual systems and fostered by the availability of increased computing power. Such integrated simulation 

models are often based on legacy source code applications written in a programming language rather than in a 

model design language. They typically produce large amount of multi-dimensional model output that has to be 

handled in the course of a model analysis. These aspects hamper the application of quality assurance techniques 

since source code is not always well known by model users and intensive code manipulations are normally 

beyond the scope of the work. Additionally, the computational costs for models in global change research are 

often very high which demands structured experimentation approaches. Dealing with uncertainty and 

communicating it to decision makers and the general public is crucial in climate change research [1], [2]. For 

instance, increasing computing power enabled sensitivity and uncertainty studies of climate projections [3], [4]. 

For these purposes, a structured and integrated approach for simulation model verification, validation as 

well as sensitivity and uncertainty analyses is required. This comprises planning experiments, distributing 

simulation load, post-processing experiment output, and visualizing analysis results. Typically, existing tools 

supply these functionalities only partially. Furthermore, their interfaces to the model potentially imply 

limitations concerning usability and flexibility. There is a demand from the modeller’s perspective to manipulate 

a model as less as necessary. Finally, modellers and model users often need guidance in sensitivity and 

uncertainty related aspects of modelling and simulation.  

To handle these problems we developed the simulation environment SimEnv [5] as a flexible framework 

for sample-based model evaluation that integrates most of the standard techniques normally used by non-expert 

user. It focuses on sensitivity and uncertainty analyses. SimEnv offers a well-structured and user-friendly 

approach to interface models, to define und run experiments, to post-process them, to derive quantitative 

measures, and to qualitatively evaluate them by interactive visualization techniques. It is designed to cope with 

multi-dimensional, large-volume data in all of these processing steps. Access to the system is facilitated by 

easy-to-use interfaces.  

Experiment definition: The challenge for experiment definition from the developer’s point of view is to cover 

a broad range of tasks for sensitivity, uncertainty and error analyses, numerical verification and validation as 

well as control design. As a solution we designed pre-formed experiment type templates representing different 

sampling plans for a subset of model factors (formed from parameters, initial and/or boundary values of the 

model). SimEnv supplies the following six experiment types: (1) a flexible deterministic screening of the 

model’s behaviour in high-dimensional factor spaces, (2) a global sensitivity analysis based on the Morris 

method [6], (3) a local sensitivity analysis in the vicinity of the default factor values, (4) Monte Carlo 

experiments with built-in probability density functions for random and Latin hypercube sampling, (5) an 

uncertainty analysis to determine total and first order effects of factors on model output by the Sobol’ method 

[7], [8], and (6) an optimization technique based on simulated annealing [9] to minimize a cost function derived 

from model output over the factor space.  

Model interface: Crucial for the applicability of a model experiment framework is a flexible interface to plug in 

models easily. Thus we designed a model interface that allows with only minimal model modifications (1) to 

transfer the sample factor values into the model, and (2) to store model variables as SimEnv experiment output 

for later post-processing. Model interfacing is done at the model language level for C/C++, Fortran and Python 

by incorporating SimEnv interface function calls into model source code. The basic approach is to include per 

experiment factor and per model output variable field a SimEnv function call. Additionally, there are special 

interfaces for Matlab, Mathematica and GAMS models, for shell script models, and an interface to directly 

transform native ASCII model output to SimEnv experiment output.  

Load distribution: Hardware resources are the main bottleneck for studies of large ensemble simulations. 

Factor values are sampled during experiment preparation which allows performing the single runs of an 

experiment in parallel. This is supported by SimEnv on workstation clusters by a single run distribution 

mechanism, applying the Message Passing Interface. 

Post-processing: Analysis of large-volume experiment output requires efficient strategies for navigating the 

high-dimensional factor space and for processing / reducing the model output data. Therefore, SimEnv provides 
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an interactive post-processor with more than 100 filters / operators. Secondary model output functions can be 

derived by applying chains of general-purpose operators to model output and reference data. Run ensemble 

related aggregated measures are calculated by experiment-specific operators. SimEnv supplies built-in operators 

and an interface for user-defined operators.  

Visual evaluation: A further challenge is to analyse and communicate multi-dimensional experiment output and 

measures. Therefore, a tailored interactive visualization module has been developed and integrated. To handle 

the diversity of experiment data, this module provides both methods for spatial data sets (graphs, maps and 3D 

displays) and for data sets with abstract experiment dimensions (scatter plot matrices, parallel coordinates, 

histogram displays). This diversity of techniques with a variety of interaction mechanisms enables model 

evaluators to get deeper insight into the behaviour of their models and to communicate the results. However, a 

problem comes along with the number of visualization techniques and their numerous parameters. Thus, to help 

non-expert users to generate expressive and effective graphical representations, a mechanism to design 

appropriate visualizations that is based on data characteristics and user goals has been integrated (see [10] for an 

overview). 

For most of its components, SimEnv offers data interfaces to NetCDF, IEEE compliant binary, and 

ASCII format. Its strength is to efficiently handle multi-dimensional, large-volume output fields. Due to the 

flexible and modular framework design, additional sampling strategies / experiment types can be integrated 

easily into the environment by implementing the corresponding modules for experiment preparation, post-

processing, and visualization. The system has proved its applicability in a number of sensitivity and uncertainty 

case studies, ranging from conceptual qualitative models [11] to large scale climate models [4]. In the paper we 

will illustrate the capabilities of the system by a practical study. 
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Fluid residence times and transport-effective fracture densities (or specific heat-exchange areas) are two 

important parameters of subsurface flow systems in fractured-porous formations (or geothermal reservoirs). To 

determine them, tracer tests are indispensable. Hydraulic and geophysical testing methods cannot reliably deter-

mine the two parameters, because the signals on which these methods rely do not depend on, or do not correlate 

unambiguously with fluid motion and with solute (or heat) fluxes across fracture surfaces. Fluid temperature 

variations accompanying hydraulic operations do, in principle, reflect the two parameters, but usually high 

thermal diffusivities make temperature signals rapidly reach quasi-equilibrium values, obliterating parameter 

dependencies (especially those that would become critical in the long run).  

 

In general, tracer BTCs (breakthrough curves) from single-well push-pull tests exhibit much lower sensiti-

vity to advection-related parameters, than tracer BTCs in flow-path spikings. However, unlike sometimes stated 

in mainstream literature, a single-well push-pull procedure is not able to reduce the sensitivity of BTCs w. r. to 

hydrodynamic dispersion, and it does not really contribute to reducing that famous ‘empirical indiscernability’ 

between the various processes (hydrodynamic dispersion, matrix diffusion, sorption, multiple-compartment flow 

and exchange, ‘heterogeneity’ in general) whose added effects produce BTC tailings. 

 

At the German site of ICDP (Deep Continental Drilling Program), known as the KTB (Kontinentale 

Tiefbohrung), two boreholes are available in the crystalline basement: 4-km deep pilot hole, and 9-km deep 

main hole, penetrating different, regionally non-intersecting, yet hydraulically slightly communicating faults. 

The pilot hole is known to screen a highly-permeable fault in 3.8 – 4 km depth, and is fully cased except for this 

interval. Here, a sequence of short- and long-term spikings could be applied in parallel with a long-term 

hydraulic, geophysical and seismic testing program: solute and heat push-pull tests were conducted in the 

depleted, the stimulated, and the early post-stimulation state, with a late outflow phase in the still weakly 

pressurized, late post-stimulation state (fig. 1); tracer sampling could be performed at this hole only. 

 

 
Fig. 1: Sequence and concurrence of various hydraulic and tracer tests at the KTB site 

 

Tracer BTCs from solute push-pull tests (fig. 2), or temperature responses from heat push-pull tests (fig. 3), 

either, enabled to estimate two parameters: a transport-effective contact-surface area per volume between 

fractures and rock matrix (or a transport-effective fracture density) deemed as , and an effective radial 

extension R of the accessed reservoir (or the space scale ‘seen’ by the tracers), while other flow- and transport-

related parameters are assumed as known, or the tracer BTCs exhibit such poor sensitivity w. r. to these 

parameters that their values do not matter for the estimation of  and R. In general, this estimation will slightly 

depend upon the type of conceptualization used for the fracture network, and upon the kind of exchange 

processes or fluxes assumed across or close to fracture surfaces. 
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Fig. 2: Solute tracer push-pull tests in depleted vs. stimulated state: measured tracer BTCs, and model 

fitting 
 

      

Fig. 3: Heat push-pull sequences in depleted vs. stimulated state: in-situ temperature signal, and model 

fitting 
 

 
Fig. 4: Interpretation of fracture-system parameter changes during depletion or stimulation. Shaded areas 

represent equal reference volumes; the same fluid volume means a larger radial extension in 

depleted, than in stimulated state. During depletion, even some fractures becoming hydraulically 

inactive may still contribute non-negligible tracer fluxes, thus indicating a higher fracture density. 
 

The effects of long-term depletion (by fluid abstraction) and of long-term stimulation (by cold-fluid 

injection) on the fracture system were sensitively reflected by solute and temperature signals in terms of  and 

R, with good sensitivity especially w. r. to . For an equal flushing volume, the solute tracer test in depleted 

state indicates higher values of  and R, than in stimulated state (the post-stimulation, still weakly pressurized 

state being characterized by intermediate values of  and R). Further, in such low-porosity crystalline rock, heat 

diffusivity exceeds solute diffusivity by several magnitude orders; as a consequence, heat push-pull tests 

produced more ‘rapid’ signals in time and they could ‘see’ a larger scale in space, thus yielding ‘far-field’ values 

in contrast to the near-field values derived from solute tracer tests:  

 stimulated, far-field  >   stimulated, near-field  ,    depleted, far-field  <   depleted, near-field 

R stimulated  <  R depleted  ,   R solute tracers  <  R heat 

This implies (cf. fig. 4) that the prevailing effect of long-term, moderate-rate, cold-fluid injection was to enlarge 

pre-existing fractures, rather than creating new ones – despite some expectations that cooling-induced cracking 

would prevail; even though (micro-)cracking might have occurred extensively, these (micro-)cracks’ 

contribution to heat and solute transport was overwhelmed by the contribution of pre-existing fractures. 
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Wages and salaries by social characteristics (sex, age, occupation and educational level) and also in 

relation with non-standard forms of paid employment are essential to analyse and understand the labour market. 

These data will allow analysing how wages and salaries accrue to different categories of employees as a result 

of their involvement in different kinds of paid employment. We tested the possibility of collecting data on 

wages and link this information with other relevant information from the LFS. 

Analyses also concerned wages for which there is a higher frequency of non-response to this item 

depending on profession and branch of economic activity. 

The fact of using the data regarding the employees’ monthly wage has drawn the attention on the 

problem of treating the non-responses, which affect almost a fifth of all respondents. We articulated the 

imputation procedure according to the following phases: 

1) Identification and elimination of the outliers; 

2) Imputation of the exact value in the case of respondents providing wage in bands; 

3) Imputation of missing values. 

As regards the identification of the outliers, the purpose was to identify the abnormal values so high or so 

low that there is a sufficiently high probability they are wrong. Likewise, it is relevant to identify the values that, 

despite their very low relative frequency, could perturb the estimation of the regression coefficients for imputing 

the missing values, due to their distance from the distribution centre. Applications by means of the multivariate 

techniques will be used.  

The imputation phase was carried out through the INPUTE module of the IVEware packet, developed by 

the Institute for Social Research of the University of Michigan. The module consists of a generalised procedure 

of multivariate imputation that can treat even relatively difficult data structures under the MAR hypothesis 

(missing at random). IVEware applies the stochastic regression imputation methods. The results of the methods 

of regression imputation are strongly influenced by the specification of the regression model and by the set of 

covariates that we choose to include. In particular, the auxiliary variables must be strongly correlated to wages.  

Furthermore the results are also influenced by the model’s function, linear or logarithmic, and by the 

imputation’s range. 

In order to choose the best set of covariates we conducted a simulation using data of respondent to wage 

and salary. So it was possible to compare imputed data with the answers. In particular we compare the 

difference of results about 4 models: 

1. linear model with large bounds 

2. linear model with small bounds 

3. logarithmic model with large bounds 

4. logarithmic model with small bounds. 

So we tested how the model selected influence the final distribution, both the descriptive statistics and 

the distribution curve. 
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Gaussian Bayesian networks are graphical probabilistic models that provide a graphical framework of complex 

domains with lots of related variables with the same Gaussian structure. 

We develop a method to perform a one-way sensitivity analysis for Gaussian Bayesian networks useful to 

evaluate the network’s output and the impact of model inaccuracies, being the network’s output the results about 

the variable of interest and considering each time the impact of only one inaccurate parameter.  

This sensitivity analysis is based on computing a divergence measure, as the sensitivity measure, that compares 

the network’s output with and without a perturbation that quantifies model inaccuracies (Gómez-Villegas [1]). 

Moreover, the effect of the evidence propagation is considered because the sensitivity measure is computed after 

this propagation. 

In this work we generalize the obtained results computing a n-way sensitivity analysis to evaluate a set of model 

inaccuracies over the network’s output. In this case, a set of variables of interest are also considered. 

We illustrate the proposed methods with some examples. 
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By perturbing the initial state of a numerical weather prediction (NWP) model it is possible to take into account 

the impact of the errors in the initial conditions (the fully exact description of the initial state is not achievable 

due to observation errors, errors in the data assimilation techniques etc). Then the model is integrated from these 

different initial conditions forming an ensemble of numerical weather predictions. The spread of this ensemble 

provides useful information on the predictability of the atmospheric state and on the probability of different 

weather events. One possible way to create such an ensemble is to use the singular vector method [1] to perturb 

the initial conditions of the model. The aim is to find perturbations for a given initial state which grow most 

rapidly according to the chosen norm (e.g. total energy norm) focusing on a specific area (the optimization area) 

during a given time interval (optimization time). In this study sensitivity experiments were carried out in order 

to explore whether or not it is possible to optimize an existing global ensemble system (based on the French 

global NWP model ARPEGE) for Central Europe by changing only the optimization area and optimization time 

used for the global singular vector computations. With this purpose several optimization areas and times were 

defined and tested through case studies and longer test periods. Global ensemble forecasts were downscaled 

with a limited area NWP model (called ALADIN). Verification results show that the proper choice of the 

singular vector optimization domain and optimization time can increase the spread of the ensemble and (on 

average) improves the skill for the Central European area. This conclusion was found to be valid for the global 

forecasts and the limited area predictions (i.e. the simple downscaling of the global model) as well.  
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   In this paper the application of variance based sensitivity measures to numerical models of passive and active 

structural systems is evaluated. Sensitivity Analyses (SA) are performed for the purpose of design optimization, 

reliability and durability assessment.  

   In modern engineering, the Finite Element Method (FEM) has become a widely accepted tool to assess the 

mechanical behavior of technical components and structures, whereas the reliability and structural durability of 

systems is assessed mostly using experimental test methods. With increasing complexity of the structures and 

especially integration of electronic components and smart materials, e.g. piezoceramic actuators and sensors, 

experimental costs become exceedingly large. Thus, great effort is undertaken to replace these traditional test 

methods by computational simulation tools, which have to be able to reproduce the complex system 

performance and also account for various failure and fatigue scenarios. 

   The combination of FEM modeling and global SA methods seems to be very promising for this purpose. 

Uncertainty inherent to such systems can be implemented and interacting parameters can be identified. Using an 

accordingly well defined model output and failure modes designed as uncertain distributed input parameters, SA 

can be used to identify and classify the importance of the different input values and thus assess the reliability of 

the system with respect to each implemented failure mode. 

   The methodology used is exemplified by the analysis of a simple passive structure. Subsequently the appli-

cation to an active complex system is presented. At first a notched axisymmetric component part is considered, 

which can be found in many technical structures. The component is exposed to a pressure load and the system 

failure is characterized by plastic deformation and the formation of structural cracks. To avoid failure and to 

secure a long lifespan, components like this are often overdesigned which contradicts the objective of energy 

efficient lightweight design. In order to optimize the component design and still secure the operational reliability 

a variance based SA is performed to identify the parameters which contribute strongly to the component failure 

defined as a certain threshold of plastic deformation. Several uncertain parameters are considered, where 

variations in the material parameters and abrasion of the machine tools, influencing the geometrical shape, are 

taken into account. A parallel probabilistic analysis is performed and correlation coefficients obtained. The 

results of the variance based SA and the probabilistic analysis are presented and discussed. 

   A second application scenario for SA is presented, with the analysis of an active oilpan system. Sound 

radiated from the oilpan is one of the main contributions to the noise emission of combustion engines in cars and 

dominates the noise contribution in most urban traffic scenarios. For several technical reasons, passive solutions 

for the reduction of noise emission are not feasible. Therefore, active noise suppression systems are designed, 

comprising piezoelectric actuators and sensors, which are subject to more or less severe degradation depending 

on operating conditions, applied control algorithm and load-time history. The performance of the active system, 

characterized by a defined reduction of noise emission in a particular frequency range, is simulated in different 

failure and fatigue scenarios. These include sensor and actuator degradation and malfunction. In order to choose 

an optimal design, including the most fault tolerant control algorithm, a SA is conducted, to incorporate uncer-

tainties and variations in the positioning and performance of sensors and actuators and geometrical and material 

parameters. The results are shown and discussed. The application of variance based sensitivity measures on 

models based on the FEM is shown to be a valuable tool to assess an optimized design with respect to reliability 

and robustness. 
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     It has been demonstrated that ensemble (Monte Carlo) forecast systems can describe forecast uncertainty 

associated with errors in the initial conditions of chaotic dynamical systems. The realistic description of model-

related forecast errors is a more challenging task. Despite the development and application of various related 

techniques (see, e.g., Toth and Vannitsem [1]), ensemble forecast systems in general are under-dispersive and 

cannot properly account for model-related uncertainty. 

 

To represent model-related forecast uncertainty in numerical atmospheric general circulation models, a 

stochastic perturbation scheme has been developed for and tested with the National Centers for Environmental 

Prediction (NCEP) Global Ensemble Forecast System (GEFS). The scheme is based on the time evolving 

perturbations in an ensemble forecast system. The stochastic perturbations are defined based on the total 

conventional forcing, including the grid scale processes and the sub-grid scale parameterizations. Specifically, 

the stochastic perturbation (i.e., an extra forcing term) for a particular ensemble member is a weighted 

combination of the tendencies of the ensemble perturbations, i.e the differences in tendency between the 

ensemble members and the control forecast. The combination coefficients (see Fig. 1) are generated through a 

temporally correlated stochastic process using constraints that keep the perturbations quasi-orthogonal. The 

resulting flow dependent perturbations are applied to all model state variables. 

 

The scheme will be assessed in the context of how well it captures forecast errors that cannot be explained by 

perturbing the initial state of the system. Initial tests with the stochastic perturbation scheme show a significant 

reduction in the number of outliers (i.e., cases when the verifying truth lies outside of the ensemble of forecasts), 

and an increase in the spread of the ensemble, reaching the level of root mean square error of the ensemble mean 

forecast. Also, a marked decrease in systematic errors is observed, along with an improvement in probabilistic 

forecast performance. Interestingly, the positive effects of the stochastic perturbation scheme are 

complementary to the effect of statistical post-processing used for reducing systematic errors. When statistical 

bias correction is applied on the stochastically perturbed ensemble, the performance significantly surpasses that 

of an ensemble that is either only statistically bias-corrected or only stochastically perturbed. 
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Fig. 1. Linear coefficients used to combine 

tendency perturbations for stochastic 

forcing to be applied on a particular 

ensemble member, based on all members of 

the ensemble (lines with various colors), as 

a function of forecast lead time  
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This works aims to presents a statistical analysis and a spatial modelling of a G.I.S platform of the 

precipitation data in the semi-arid area of south-east Morocco, which corresponds to watersheds of the Ziz and 

Rheris rivers. This analysis is a kind of statistical treatment of rainfall data series which provides cartography 

with the precipitation data (Fig.1). Thus, we propose an equation explaining the precipitation value by means of 

four variables determined from a model of multiple regressions. This approach of modelling, based on the 

construction of continuous spatial information in raster format from the punctual data issued of the variable 

density observation networks, leads to search for the laws and the statistical properties. These last, permit to 

understand well the spatialization of precipitations with physiographic environment (MNT, slope, exhibition, 

geology, proximity of the Sahara, latitude and longitude). 

The use of the statistical techniques notably the analysis in main constituents (AMP), and the multiple 

regression, as well as the cartographic capacity of a G.I.S seems well adapted to criticizing and analysing the 

continuity and spatial modelling of rainfall data in semi-arid climate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Modelling approach used to spatialize climatic data 
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Sensitivity analysis methods in application to the analysis of the influence of imperfections of steel 

structures on their reliability are presented in the paper. The aim of sensitivity analysis is the assessment of the 

influence of input random variables on the variability of output random variables. In regard to the limit states of 

structures, the load carrying capacity (or deflection at selected section) is frequently considered as the output 

variable. In mass produced products (e.g. steel hot–rolled profiles, etc.) it is possible to according to the relative 

sensitivity determine those variables that the monitored output (e.g. load carrying capacity) is especially 

sensitive to. It is then possible to concentrate control activity on these variables with aim at securing sufficient 

stability in statistical parameters or at lowering their random variability. 

Sensitivity analysis can be generally divided into two groups: 

a) Deterministic sensitivity analysis (design sensitivity) is relatively well known, frequently used during 

structural design. The most frequent type of sensitivity analysis is a parametric study utilizing a computational 

model, which accompanies the design process [1]. This study may be simply realized as a sequence of 

calculations with gradually varying values of a certain input parameter Xi in each calculation step j(j = 1, 2,…,K) 

in a certain real range. The influence of parameter Xi on the response Yj can be observed through the comparison 

of the calculative results Yj (the set of the structure response). Certain more advanced computational 

programmes include such an option and everything is performed automatically. Quantified data on sensitivity is 

however not obtained. 

 b) Stochastic sensitivity analysis offers more complex and quantified information on the influence of 

parameters. It is however necessary to utilize more sophisticated numerical methods. Different procedures of 

stochastic sensitivity analysis are frequently implemented in reliability based software. Input parameters are 

considered as random variables, described by their probability distributions with given statistical parameters: 

mean value, standard deviation, respectively by their skewness and kurtosis. The procedure for the 

determination of sensitivity is to a certain degree similar to the deterministic sensitivity analysis. The parameter 

is also gradually changed, however, within the framework of the applied simulation technique. The influence of 

this change on the output variable is observed. The change in input variable is performed with respect to its 

distribution (the frequency of its occurrence), i.e., other valuable information, which is neglected in the 

deterministic sensitivity analysis, is utilized. The sensitivity analysis is a suitable supplement of every level of 

reliability analysis. It is usually performed in connection to utilized reliability analysis. 

It would be very valuable to perform the stochastic sensitivity analysis utilizing experimental results. This is 

however practically impossible especially due to economic restraints. Only certain characteristics of beams can 

be reliably measured by non–destructive methods. It is better to use numerical sensitivity analysis. Particularly 

due to large diversity of initial imperfections and possibilities of their mutual combination it is more suitable to 

utilise the so–called numerical sensitivity analysis. During which it is possible to utilize valuable results of long 

term research e.g. [4, 5]. 

The subject of the article is the numerical stochastic sensitivity analysis of the influence of imperfections on 

the load carrying capacity of steel structures. Imperfections are generally random variables, only very little 

statistical information of these variables from measurements on real structures is available. Typical examples 

include system imperfections of plane frames; see Fig. 1 and Fig. 2. The loading type of steel frames in Fig. 1 

predicts large influence of system imperfections on the load carrying capacity. System imperfections are 

depicted by a dashed line in Fig. 1. The influence of boundary conditions on the sensitivity of the load carrying 

capacity to the imperfection is studied. Boundary conditions were considered as hinged and clamped end in the 

numerical study. These represent limit variants of reality. Additionally considered imperfections include strut 

imperfections of columns, geometric deviations of profile dimensions, material and geometric characteristics. 

The output load carrying capacity was evaluated by means of the geometric non–linear solution of the finite 

element method. Input random imperfections were considered according to results of experimental research [2] 

and [3]. The random load carrying capacity was evaluated utilizing the Latin Hypercube Sampling method, 

which is an improved version of the Monte Carlo method. 800 simulation runs were utilized. The sensitivity 

analysis was performed in the form of Spearman’s rank–order correlation coefficient. A frame of height 6m and 

span 6m with cross beam IPE 360 and columns IPE 270 was solved. 
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Fig. 1: System imperfections of steel plane frames 

 

The influence of input variables on the load carrying capacity was evaluated by means of sensitivity 

analysis. Sensitivity analyses results illustrate varying sensitivity of the load carrying capacity to the system 

imperfections of both frames depicted in Fig. 1. The variability of the load carrying capacity is more sensitive to 

the variability of system imperfections in the left frame. Conversely, the dominant variables of the right frame 

are the yield strength and residual stress. Relatively high correlation between the load carrying capacity and the 

flange thickness of the columns was observed in practically all of the analysed problems. 

Statistical characteristics of the dominant input variables should be determined and checked with increased 

care [2]. Input random variables can generally be divided into two basic groups – imperfections, whose 

statistical characteristics can be positively influenced in production (yield strength, residual stress, geometrical 

characteristics), and imperfections, which are not sensitive to changes in the technology of production (e.g. 

variability of Young’s modulus E) [2]. The first group of variables may be further subdivided into two 

subgroups: (i) variables for which both the mean value and the standard deviation can be changed by improving 

the quality of production, e.g. the yield strength; (ii) variables whose mean value cannot be significantly 

changed because it should approximately correspond to the nominal value (geometric characteristics of profile 

dimensions) [2]. 

 

Acknowledgement: 

The present paper was elaborated under the project GAČR 103/07/1067, junior research project KJ201720602 

of Czech Academy of Science, Research Centre Project CIDEAS 1M68407700001(1M0579) and project 

GAČR 103/05/2059. 

 

References 

 

[1] Balut N, Moldovan A: Sensitivity of steel structures to different categories of imperfections, In: Proceedings 

of SDSS´99, Elsevier Science 1999. 

 

[2] Kala Z: Sensitivity Analysis of the Stability Problems of Thin–Walled Structures. Journal of Constructional 

Steel Research 61(3), 415–422, (2005) ISSN 0143–974X.  

 

[3] Kala Z: Auxiliary Sensitivity Analysis Applied to Stability Problems of Steel Frame Structures, Journal of 

Engineering Mechanic 12(1), Brno: VUT, 2005, ISSN 1210 2717. 

 

[4] Kala Z, Kala J, Škaloud M, Teplý B: The Stress State in the Crack–Prone Areas of „Breathing“ Thin Walled 

Girders – a Sensitivity Analysis, In: Proc. of the Fourth International Conference on Coupled Instabilities in 

Metal Structures, Rome (Italy) 2004, pp.265–276. 

 

[5] Kala Z, Kala J, Škaloud M, Teplý B: Sensitivity Analysis of the Initial Imperfections Influence on the Stress 

State in the Crack Prone Areas of Breathing Webs, In: Proc. of 4th European Conference on Steel and 

Composite Structures, Maastricht (Netherlands), 2005, pp.1.7–47 to 1.7–54, ISBN 3–86130–812–6. 

 

[6] Kala Z, Kala J, Škaloud M, Teplý B: Sensitivity Analysis of the State of Stress in the Crack–Prone Areas of 

Breathing Webs, In: Proc. of Int. Conf. Lightweight Structures in Civil Engineering, Warsaw, 2005, pp. 219–

228, ISBN 83–908867–9–0. 



 107 

SENSITIVITY ANALYSIS OF FATIGUE CRACK PROPAGATION 
 

Z. Kala1*, A. Omishore1 
1Brno University of Technology, Czech Republic 

kala.z@fce.vutbr.cz 

 

One of the inherent parts of the design of new or existing structures under the influence of many times 

repeated loading is the assessment of fatigue. A part of design is the stipulation of the criteria of limit states, i.e. 

the stipulation of conditions to be fulfilled so that the structure is reliable in all situations and all loading cases 

and failure does not occur. During the analysis of complex problems of structural behaviour in addition to the 

final result we generally may be interested in further matters, such as: in what way the input parameters 

influence the result, or in other words, the sensitivity of the response to a change of the input parameter. The 

identification of these quantities and their constitutive relations is performed utilizing the methods of sensitivity 

analysis. 

Sensitivity analysis methods enable the quantification of the influence and the assessment of the significance 

of individual input variables on structural response. In view of the fact that input variables are generally random, 

it is necessary to take their variability into account during the determination of their influences. The output 

variable of the computational model is then also a random variable, for which we can determine the mean value, 

variation coefficient, distribution type, etc. similarly as for the input variables. In the event that information on 

the variability of input and output variables is available, the quantification of sensitivity of output variables on 

the input variables can be performed. In this regard we speak about the so-called stochastic sensitivity analysis. 

The stochastic sensitivity analysis enables the assessment of the relative sensitivity of random variability of the 

studied phenomenon to the random variability of individual input variables [1]. 

The aim of the presented study is a sensitivity analysis of the effect of factors influencing the fatigue crack 

propagation in a steel element under bending moment. The linear elastic fracture mechanics based on Paris-

Erdogan’s formula was used. 

 

 nKC
dN

da
      (1) 

 

where a – crack size, N – number of cycles, C, n – material constants, K is the amplitude of the stress 

intensity coefficient. C, n are material constants which can be determined by statistical processing from a set of 

experimentally determined data pairs (da/dN, K). From acquired results it is possible to make 

recommendations which input random variables have the greatest influence on the fatigue resistance and should 

thus be checked with increased accuracy in production of new structures and during the examination of existing 

structures. 

 

 
 

Fig. 1: Density function of initial crack size a0        Fig. 2: Element with initial crack size a0  

 

From measurements of crack propagations in the surface of welded joints it was determined that the 

lognormal distribution with mean value ma0 = 0.526 and standard deviation Sa0 = 0.504 can be considered for the 

initial crack [4]. Further random variables considered include the width of steel element b and the critical length 

acr that the crack approaches without reaching macro plastic instability. Mean value mb = 400 mm and standard 

deviation Sb = 25 mm [2] were considered for the width of the steel element. In the case of the critical crack 

length acr mean value macr = 200 mm and standard deviation Sacr = 20 mm [2] were considered. The coefficient n, 

which represents a function of a whole array of factors [3], was also implemented as a random variable. The 

coefficient n increases with decreasing fracture toughness. The parameter n was assumed to have a Gaussian 
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distribution with mean value mn=3 and variation coefficient vn=0.01 in our study. The strong correlation 

between parameters C and n was confirmed experimentally [3]. In the event that exponent n does not represent a 

universal constant, it stems from the analysis of Paris-Erdogan’s relation (1), that the physical size of constant C 

generally changes too. The interrelationship between C and n can be expressed according to [3] as 

log(C) = c1 + c2 n. Parameters c1<0 and c2<0 are constants for given material grade. We considered in 

accordance with [3] for our example for steel of grade S235 c1= -11.141, c2= -0.507. The realizations of input 

random variables were generated utilizing the LHS method for 400 runs. The fatigue resistance, which is the 

maximum number of cycles N during which the crack with initial size a0 reaches the critical size acr, was 

considered as the output random variable. 

The sensitivity analysis was evaluated by monitoring the Spearman rank-order correlation coefficient 

between the input and output, see Fig. 3a. The method based on the evaluations of the ratio of second order of 

variation coefficients between input and output was chosen as a second alternative, see Fig. 3a. 

 

 
 

Fig. 3: Results of sensitivity analysis 

 

The variability of initial crack size a0 has the greatest influence on the variability of fatigue resistance [2]. 

The sensitivity coefficient value decreases with increasing stress amplitude  . Since the initial crack size has a 

large influence on the fatigue resistance, its statistical characteristics should be determined with maximal 

precision. The second dominant variable is parameter n. Determination of satisfactorily accurate statistical 

characteristics of parameter n is of major importance for further application in probability analyses. The 

sensitivity coefficient of parameter n increases with increasing value of  . The variability of the width of the 

steel element b and of the critical length acr has no influence on the variability of fatigue resistance and hence 

can be considered as deterministic variables. This may significantly simplify modelling. 
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Fuel cell technology is one of the most promising opportunities for generating energy with decreased 

environmental impact. Several types of fuel cells have been developed in the past decades. One of the great 

advantages of solid-oxide fuel cells is their absolute tolerance to CO, unlike the other types of fuel cells e.g. 

solid polymer electrolyte fuel cells (SPEFCs). Furthermore, in solid-oxide fuel cells several available fossil fuels 

can be used, thus there is no need to build a hydrogen delivery infrastructure. In hybrid systems, where a gas 

turbine is built in the SOFC, the efficiency can reach 75-80 % [1].  

The core of the solid-oxide fuel cell (SOFC) is a solid electrolyte, which is a conductor for oxide-ions at the 

operating temperature. During the operation of the solid-oxide fuel cell, oxygen is reduced at the cathode, the 

formed oxygen anion diffuses across the oxide-ion selective electrolyte, which is insulating for electrons. 

Although solid-oxide fuel cells have so far been operated with methane, propane, butane, fermentation gas, 

gasified biomass and paint fumes [2], the hydrocarbon fuel is first converted mainly to CO and H2 by steam 

reforming, either within the anode region or externally. In the three-phase region, hydrogen is electrochemically 

oxidized and forms water and electrons. This water then participates in the water gas shift reaction to convert 

CO to CO2 and H2, and this H2 is subsequently oxidized in the three- phase region. 

The operating temperature is about 800-1000 °C and therefore the homogeneous gas-phase reactions are 

significant before the fuel mixture reaches the anode. These reactions convert the initial hydrocarbons to H2, 

CO, H2O and other products, and also may lead to the formation of polyaromatic hydrocarbon deposits. Air and 

water steam may be added to the initial fuel to prevent deposit formation. Deposit formation can be related to 

the concentration of species having more than four carbon atoms, denoted by C5+. 

Anthony Dean and his group study the homogeneous gas-phase anode channel reactions of solid-oxide fuel 

cells. Recently, a detailed reaction mechanism was created and tested [3] that is applicable at solid-oxide fuel 

cell operating conditions. It can model the reactions of methane and natural gas, with air and/or steam added. In 

this study, a further developed (2006 May) version of the mechanism was investigated which contains 6874 

irreversible reactions of 350 species. This mechanism is too large for an industrial optimisation process and 

therefore reduction is needed. Our purpose was to find a reduced mechanism, which contains less species and 

fewer reactions, but its simulation reproduces the results obtained using 

the original mechanism within a few percent. We intended to 

investigate the effects of the composition and temperature on the 

formation of the main products and the C5+ species. 

The CHEMKIN 4 program package was used for the simulations. 

The effect of the various initial compositions was investigated in two 

series of simulations using the original mechanism. The operating 

conditions of a solid-oxide fuel cell can vary across a wide range of 

conditions, and we selected initial parameters that generally represent 

well the SOFCs. Thus, 

temperature and pressure were 

chosen to be 900 °C (1173.15 K) and 1 atm (101325 Pa), 

respectively. In both series of simulations, the initial mole fraction of 

methane was 0.3. Results are illustrated on a series of contour plots 

showing mole fractions of species as a function of residence time (x 

axis) and the initial mole fraction of steam (y axis).  

In the first series of simulations, the initial mixture consisted of 

methane, air and steam. Mole fraction of steam was varied from 0.7 to 

0. Accordingly, the initial mole fraction of air changed from 0 to 0.7. 

The mole fraction of methane is viewed in Figure 1. In the second 

series of simulations, the initial mixture consisted of methane, steam 

and CO2. Mole fraction of steam was varied from 0.7 to 0, and thus the 

initial mole fraction of CO2 changed from 0 to 0.7. The mole fraction 

of methane is viewed in Figure 2. 

It’s visible that the composition of the original mixture has a great 

importance. The curves have very different characteristics: presence of 

oxygen makes the reaction much faster. In air rich mixtures the decay 

of mole fractions of oxygen and methane are fast. In methane  air  steam mixtures there are significant 
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differences in the behaviour of air rich and steam rich mixtures. In 

methane  steam  carbon dioxide mixtures the changes are much 

slower and the dependence on the initial composition is less. 

The mechanism reduction was carried out at isothermal and 

isobaric conditions. The composition of the initial mixture was 

30.0 % v/v methane and 70.0 % v/v air. The assumed composition 

of air was 79 % v/v nitrogen and 21 % v/v oxygen. The mole 

fraction of CH4, O2, N2, CO, CO2, H2CO, H2, H2O, C2H6, C2H4, 

C2H2 and benzene (C6H6) reaches or exceeds 0.001. The mole 

fraction-time curves of major species can be seen in Figure 3. 

Two ways of mechanism reduction were applied. In the first 

manner, the reduction was carried out in two steps: first the 

redundant species, then the redundant reactions were eliminated. In 

the second manner some disadvantages of the original method were 

eliminated. 

A possible algorithm for the detection of redundant species can 

be based on the inspection of the normalized Jacobian 

  ijjiij yffy J
~ . An element of the normalized Jacobian provides 

information about how the production rate of species j changes, if 

the concentration of species i is perturbed [4,5]. In the next step, 

redundant reactions were eliminated. A possible method for the 

elimination of redundant reactions from detailed reaction 

mechanisms is the principal component analysis of the rate sensitivity matrix F (PCAF method) [5,6]. Both 

analyses were done by program KINALC [7]. 

The reduced mechanism contains only 1834 irreversible reactions of 168 species. We observed good 

agreement of the mole fractions of the important species, when their mole fraction was higher then 0.001. Thus, 

good agreement was observed for species CH4, N2, CO, CO2, H2, H2O, C2H4 and C2H2 during the whole time-

scale; O2, H2CO and C2H6 till 1 s, and benzene (C6H6) from 100 s. The average error was less than 1 %, the 

largest difference was 6.90 % for the mole fraction of benzene at t = 970 s.  

The original species/reaction elimination method has some disadvantages. Species, having either non-zero 

initial concentration, or an introduction term, or an effective production reaction (a reaction route back to 

initialized or introduced species) is called a living species. The original method allows that a species is indicated 

to be necessary, but this species is not necessarily living. Addition of one species to the set of important species 

not necessarily makes any reaction selected, thus the connection of those species or set of species should be 

investigated, which make at least one reaction selected. Minimal sets closely connected to the group at every 

times are identified and ranked according to their strengths of link. At every time point there can be many 

minimal sets with strong link to the group, therefore it is reasonable to try more of them to find the optimal way 

to reduce error. Each of the added sets is checked whether its species become living when added to the group. 

After this a numerical test determined, which effective set of species are the most efficient in improving 

agreement with the full mechanism. The obtained skeletal mechanisms are integrated, and their species and 

global errors are stored. At every size, the set of necessary species with smallest error are taken under PCA to 

find important reactions. One of the reduced mechanisms contains 50 species, its maximal error is 5 %, and the 

simulation process is 92 times faster. 
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THE PRINCIPAL VARIANCE-BASED SENSITIVITY INDICES CAN BE 

ESTIMATED WITHOUT ASSUMING INDEPENDENCE BETWEEN THE INPUT 

VARIABLES  
 

Bernard Krzykacz-Hausmann 

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) 

Bernard.Krzykacz-Hausmann@grs.de 

 

The two principal types of variance-based sensitivity indices, the “first-order effect” index and the “total effect” 

index, are well known and often used in global sensitivity analyses of results from computational models. 

However, originally, the definition and interpretation of these sensitivity indices as well as the sampling-based 

computational procedures, e.g. the “Homma-Saltelli” method, have been based essentially on the assumption of 

stochastic independence between the input variables involved. Particularly, it is well known that Sobol’s 

variance decomposition, a crucial point of the original representation of the variance-based global sensitivity 

analysis, is valid only in case of independent input variables. Modifications of the method, e.g. assuming 

independence only between variables from disjoint subsets but not necessarily between variables inside each 

subset, have slightly mitigated but not fully eliminated this restriction.  

This paper will show that the assumption of independence is essentially unnecessary and can be dropped. The 

“first-order effect” and the “total effect” sensitivity indices can consistently be defined and interpreted without 

this restriction and without reference to Sobol’s variance decomposition as well. Moreover, a slight modification 

of the original “Homma-Saltelli” sampling-based computational procedure is suggested with which the two 

types of sensitivity indices can be estimated in the dependent case in nearly the same way and at exactly the 

same moderate computational cost as in the independent case. It therefore provides a practicable alternative to 

the computationally much more expensive “nested” “double-loop” calculations so far necessary for the global 

sensitivity analysis in the general non-independent case. Any type of dependence between the input variables 

can in principle be accounted for by this method as long as it can be represented by tractable conditional 

probability distributions. In the independent case, i.e. when the joint probability distribution of the variables is 

the product of their marginal distributions, this method of course coincides with the traditional “Homma-

Saltelli” method.  
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Dynamic crop models are used by agronomists for crop management and for predicting the effects of farmers’ 

practices on crop characteristics, assuming various climate and environment conditions. Many crop models 

predict plant growth (wheat, corn...) on a daily basis through detailed mechanisms in function of daily climatic 

inputs like daily radiation and temperature. Their outputs can be expressed as time series. Such models are 

dynamic, complex and often over-parameterized with respect to the available observations [4]. Indeed, they can 

include up to 200 parameters which need calibration. In general, it is impossible to estimate all parameters of 

such models. The strategy of selecting a subset of parameters to be calibrated and fixing the others to their 

nominal values is reported in [1], [2] and is based on sensitivity analysis.  

 

For a dynamic crop model, sensitivity analysis can be applied separately on each daily output but there is a high 

level of redundancy between close dates and, on the other hand, interesting features of the dynamic may be 

missed out [5]. As an alternative, Campbell and McKay [3] proposed to decompose time series upon a complete 

orthogonal basis and to compute sensitivity indices on each component of the decomposition. In this paper, we 

follow on this proposal and present the multivariate sensitivity analysis under a global framework coherent with 

classical multivariate methods. A global index is deduced which synthesizes the decomposition of the total 

output inertia between parameter main effects and interactions. It may be used to select a subset of parameters to 

be calibrated. In addition a quality criterion is proposed for any approximation associated with the 

decomposition.  

 

Crop models are usually deterministic and they can be written in the mathematical form 

 

                                   Y(t) = f ( X, t ),                                         (1) 

where X is here the parameter vector and Y(t) is the output at time t, for t=1 ...T. Y(t) may represent, for 

instance the wheat biomass observed at day t. Each parameter is unknown but is supposed to vary within an 

uncertainty interval.  

 

Consider, for simplicity, a complete factorial design on the uncertain parameters. Simulations using equation (1) 

generate the outputs matrix Y. Each column Y(t) of Y represents the simulated values of the output variable at a 

given time t. Each row of Y is an individual dynamic output for a given set of input values and the rows of Y 

constitute a sample of dynamics in RT over the uncertainty domain of the input factors. The quantity σ2 = 

Trace(Y'Y) is called the total inertia of Y. In practice, the columns of Y are often centered and standardized so 

that σ2 = T. When a Principal Component Analysis (PCA) is applied to the matrix Y, global sensitivity analyses 

can be performed on each principal component via ANOVA decompositions. The 'Sum of Square (SC)' 

associated with any factorial term W (a main effect or an interaction between parameters included in X) and any 

principal component Hj can be expressed as SCWj=Trace(Y'SWYvjvj’), where SW is the orthogonal projection 

matrix on the subspace associated with W and vj is the eigenvector associated with Hj. This quantity becomes 

SC
P

W  = Trace(Y'SWY∑vjvj’) when summing for j over the first P principal components and SCW 

=Trace(Y'SWY) when summing over all principal components. By then summing SCW (resp SCWj, SC
P

W
) over 

all factorial terms W, one obtains σ2 (resp λj , ∑λj), where λj is the inertia associated with Hj. Thus SCW 

represents the inertia accounted for by W and SCWj the variance due to W on the principal component Hj. In 

consequence, the Sensitivity Global Index of W is defined as SGI(W) = SCW/σ2, whereas SIj(W) = SCWj/λj is the 

classical Sensitivity Index of W on Hj. 

 

In practice, the model is often approximated by the first P principal components and by restricting the ANOVA 

models to the main effects and a few interactions. Thus the "approximate" Sensitivity Global Index IG
~

S is 

defined as  

                                  IG
~

S (W) = SC
P

W  / 


P

j 1

λj                                  (2) 

In this case, ∑W SC
P

W  /σ2 quantifies the percentage of inertia preserved by the approximation. In order to assess 

the approximation directly on the Y(t)s, a dynamic coefficient of determination at date t is also proposed.  

mailto:Matieyendou.lamboni@jouy.inra.fr
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This approach was applied to the crop model WWDM (Winter wheat Dry Matter Model) which simulates wheat 

dry matter at a daily time step in function of 7 parameters. Table 1 shows the Sensitivity Global Indices when 

one considers only the first 3 principal components and the first order interactions. These indices were computed 

by using the sums of square SC
3

W
. The radiation use efficiency parameter Eb appears to be the most important 

parameter and it is worth investigating in its calibration. By using the first 3 principal components and only the 

first order interactions, 91% of the total inertia is accounted for. The dynamic coefficient of determination is 

shown in Figure 1. 

 

Factorial  

Term 

 (W)  

Sensitivity index per component Sensitivity Global Index  

PC1 PC2 PC3  IG
~

S  SGI 

Eb 0.446 0.089 0.002 0.294 0.282 

A 0.013 0.482 0.026 0.184 0.178 

TI 0.104 0.164 0.154 0.128 0.126 

Lmax 0.139 0.016 0.007 0.088 0.085 

A:B 0.083 0.009 0.088 0.057 0.060 

B 0.058 0.010 0.083 0.042 0.041 

A:TI 0.016 0.028 0.298 0.034 0.036 

Eb:A 0.002 0.085 0.005 0.032 0.031 

Eb:Ti 0.018 0.029 0.027 0.023 0.022 

Lmax:A 0.016 0.017 0.052 0.018 0.018 

PCInertia (%)  56.1 34.9 4.6 95.6 100 

 

Table 1: Sensitivity Indices for the top ten WWDM factorial terms.  

 

 
Figure 1: Dynamic coefficient of determination for WWDM model 
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For realistic decision-making in risk management, the reliability and quality of exposure and risk model outputs, 

which depend on uncertainty, must be known. Therefore, sensitivity analysis is a central point to study the 

problem of how the output Y  is sensitive to the uncertainty of the input variables pXXX ,...,, 21 . Usually, 

output uncertainty is described in terms of variance. Variance is popular in sensitivity analysis because of its 

simplicity and its historical development; statisticians also use it as a reference measure of the dispersion. 

 

Other measures may be used to characterize the uncertainty of a model output related to an input variable. 

Krykacz-Haussmann [1] has criticized the use of variance as a measure of output uncertainty and proposed to 

use the entropy. Entropy is an information criterion which measures the amount of uncertainty or information 

content that is implied by a probability distribution. It has the advantage of depending on many more parameters 

than just the second moment which allows only to measure a dispersion around the mean. Moreover, the 

conditional variance  ii xXYV  , pi ,...,1  can be larger than  YV  while the entropy  YH  verifies 

   YHxXYH ii  . Shannon’s entropy of a random vector  pXX ,...,1X  of pIR  with probability density 

function  xf , is defined as: 

       .log xxxX  pIR
dffH  

Note that the entropy of continuous random variables is not invariant under a continuous invertible 

transformation of variables. 

 

To anticipate the impact of input vector variations to the output in terms of entropy, the following result [2] is 

very useful when the dimensions of the two vectors are the same: Let  pXX ,...,1X  and  pYY ,...,1Y  be 

two random vectors of p  variables, and  .t  a continuously differentiable transformation such that  XY t , 

then: 

          xxxXY 
nIR

dtJfHH log , 

where )(xf  is the probability density of X  and  yJ  is the Jacobian of the inverse transformation  .1t . 

Unfortunately, such a result is not yet available for vectors of different dimensions:    YX dimdim  . 

Furthermore, unlike in the univariate case, many entropy expressions aren’t calculable in multivariate situation. 

 

Comparatively to the variance for which the expression     XYY X VEV   is used, the “mutual information” 

 YX,I  between two random vectors X  and Y , is an invariant (under one-to-one transformations), symmetric 

and natural measure of the dependence between X  and Y , and corresponds to: 

           XYYYX,YXYX, HHHHHI  . 

Sensitivity indices based on mutual information seems to be as much attractive as variance-based sensitivity 

analysis one, to obtain “importance measure” on input variables. 

 

There is no universal relationship between entropy and variance “orderings of distribution”. Mukherjee and 

Ratnaparkhi [3] presented some relationships between the two for some particular univariate distributions. 

Writing the entropy in terms of variance, Ebrahimi and al. [4] find the orderings across some families of 

univariate distributions. Also, “   Xvar ” implies that “   XH ” but the converse may not hold. That 

means entropy measures could exist even if variance ones are infinite or not defined. For example, the variance 

of the Cauchy distribution, or the T-Student distribution one for some parameters, does not exist, while their 

entropy always does. The entropy  XH  is a dimensionless scalar measure of a distribution; consequently in 

the multivariate case, entropy rankings can be easily obtained. On the contrary, the variance  XV  approach 

leads to a matrix of order  Xdim  and variance rankings are based on arbitrary measures, such as the 

determinant or the trace of the variance-covariance matrix. We show that entropy depends on much more 

information about a vector of random variables than its variance. 

A copula    pxxcc ,...,1x  is a multivariate probability density function defined on the unit cube  p
1,0  (each 
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marginal law is a uniform  1,0U  dependent to each other). The copula approach has the advantage of 

characterizing, splitting and modelling the whole dependence structure between the p  random variables 

pXX ,...,1 , whatever the marginal distributions. 

 

In the bivariate case, we have examined entropy (and mutual information) and variance orderings of parametric 

copulas families  yxc ,  with respect to some functions of margins, such as sum and product. We present and 

discuss some analytical formulas and graphical relationships between variance and entropy of several bivariate 

copulas, such as Farlie-Gumbel-Morgenstern, Gamma-Exponential or Dirichlet. We also compare joint, 

conditional and marginal entropies and variances using the following property: 

           YXYXYXYX YX HEHHEHH , . 

 

As a practical application, the U.S. Environmental Protection Agency’s Integrated Exposure Uptake Bio Kinetic 

(IEUBK) model for lead in children allows to estimate children’s blood lead levels by integrating exposure from 

lead in air, food, water, soil, dust and other sources with pharmacokinetic modelling. Unfortunately, the model 

doesn’t assume any probability distribution for the input variables. Thus, we have coded the model to carry out 

Monte Carlo simulations on input variables corresponding to children’s disparity in order to obtain the blood 

lead concentration’s distribution which conveys the output variability. Empirical simulation results and entropy-

based sensitivity analysis appear to be helpful in focalising on the major aspects of the IEUBK model to take 

into account the input distributions. Our results are compared to variance-based sensitivity analysis in terms of 

“expected reduction” of the uncertainty. 
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There are many sources of uncertainty in modelling systems including uncertainty due to parameter estimations, 

input data and structure of the system. In this paper, modelling system structure is understood to be the 

algorithms and equations used to describe and calculate processes. This talk places emphasis on structural 

uncertainty in models and modelling systems since this topic has received very little attention in research 

compared to the wealth of literature on parameter and input data uncertainty. This imbalance is partly due to the 

difficulty in quantifying structural uncertainty and an example is given in this talk on how the structural 

uncertainty can be calculated. Here, a hydrodynamic model is used to simulate the flooding of a river and an 

adjacent-lying inundated surface area, such as a polder or the hinterland behind a dyke breach, using two 

different discretisations schemes: i) the flooded area is considered as a single tank which is filled and emptied 

during the flood, or ii) the area is discretised using a finer two-dimensional representation. Monte Carlo 

simulations are run with varying parameter and input data sets on both models and the variation in the output 

results are compared for both. The difference between the probability distributions in the state variables between 

the two models can be attributed to the uncertainty in the structure of the model representation of the inundated 

area. 

 

Another objective of this paper is to describe the development of the quasi-2D model used to simulate floods. In 

flood modelling, many one-dimensional (1D) hydrodynamic and water-quality models are too restricted in 

capturing the spatial differentiation of processes within the inundated areas and two-dimensional (2D) models 

are too demanding in data requirements and computational resources. The latter is an important consideration 

when uncertainty analyses using the Monte Carlo techniques are to complement the modelling exercises. Hence, 

a quasi-2D modelling approach is pursued which still calculates the dynamic wave in 1D but the discretisation 

of the computational units is in 2D, allowing a better spatial representation of the flow and substance transport 

processes in the inundated areas without a large additional expenditure on data pre-processing and simulation 

processing. The models DYNHYD (1D hydrodynamics) and TOXI (sediment and micro-pollutant transport) 

from the WASP5 modelling package (Water quality Analysis Simulation Program), developed by the US 

Environmental Protection Agency, was used as a basis for the simulations. The models were extended to 

incorporate the quasi-2D approach and were coupled in the HLA (High Level Architecture) platform to enable 

interactions between the models during simulations. This platform allowed ease of implementing Monte Carlo 

simulation runs, which were used for the uncertainty analyses. A flood event on the middle reach of the Elbe 

River in Germany was simulated as a test case. The results show a more realistic differentiation of suspended 

sediment and zinc concentrations between the inundated areas and the main channel. The results also show that 

for flood simulations, uncertainties in boundary conditions are higher and should be given more attention than 

uncertainties in model parameters. 
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The bone marrow contains a subpopulation of cells called Mesnechymal Stem Cells (MSCs) which are able to 

renew themselves repeatedly and have the ability to differentiate into multiple cell lineages. For example, MSCs 

can give rise to osteoblasts, chondrocytes, adipocytes and hematopoietic-supporing stroma. Given their 

multipotency and the ease with which they may be cultured, MSCs have high therapeutic potential.  

As a consequence of the ageing population the demand for replacement tissues is increasing. MSCs are present 

in adult organisms and they may act as a source of such tissues. However before MSCs can be used in clinical 

therapies for tissue regeneration, experimentalists must be able to produce specific cell types. While tissue 

engineering is a large and rapidly expanding area of experimental research, many questions still remain. For 

example, optimal environmental conditions for culturing MSCs to maximise the yield of osteoblasts have yet to 

be identified. This is partly due to the fact that it is difficult to measure reliably system parameters and that there 

is no universal label for MSCs. Several laboratories have developed different methods for isolating MSCs but it 

is difficult to compare their results.  

By building simple mathematical models (deterministic and stochastic) of stem cell proliferation and 

differentiation we aim to provide insight into the mechanisms that control these processes [1]. In particular, by 

performing sensitivity analyses we can identify model parameters whose variation has a significant effect on the 

system dynamics. Such results can be used to guide experimentalists by suggesting which parameters should be 

manipulated in order to increase the yield of the desired cell type. 
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Gaussian Bayesian Networks are graphical models that represent the dependence structure of a multivariate 

normal random variable with a DAG (directed acyclic graph); see, for example, Cowell et al. [2], Shachter and 

Kenley [4]. This qualitative aspect of the model has to be put with a quantitative part made up by the conditional 

distributions of each node given its parents in the graph, which are the preceding nodes. These conditional 

distributions are also normal distributions and the calculations are easily implemented.  

On the other hand the multivariate exponential power distribution (Gómez et al. [3]) is a family depending on a 

kurtosis parameter that goes from leptokurtic to platykurtic distributions with the normal as a mesokurtic 

distribution. This distribution is a generalization of the univariate distribution that was considered in Box & Tiao 

[1] for robustness studies in Bayesian inference and used later with this purpose in many situations. The 

conditional distributions are elliptical and can be also easily handled for calculations. 

The problem of uncertainty about assumption of normality is very common in applications. Thus a sensitivity 

analysis of the non-normality effect in our conclusions is necessary. The kurtosis parameter of the multivariate 

exponential power distributions becomes the main tool to deal with deviations from the normal distribution. 

The output  in Gaussian Bayesian Networks is usually the conditional distribution of the unknown variables of 

interest given some evidence, that is some known values for the rest of variables. Therefore a more general 

model can be considered using the multivariate exponential power distribution to describe the joint distribution 

of the Bayesian Network, with a kurtosis parameter reflecting deviations from the normal distribution. The 

sensitivity of the output to this perturbation is analyzed using the Kullback-Leibler divergence measure, 

studying the effect of slight non-normality in different ways. Some applications are also given. 
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  This work is devoted to the deterministic sensitivity analysis of a mathematical model for the 

simulation of flow and transport in porous media. The method used is based on the singular value 

decomposition of the Jacobian matrix of the mathematical model of the problem. Since the method uses a first 

order approximation, it provides local results around particular input and output parameters. For this reason we 

also study the variability of the results of the computation of sensitivities due to the variations of the input 

parameters of the model. Numerical results are compared with those obtained through a statistical analysis. 

 

  The questions of safety and uncertainties are central to feasibility studies for an underground nuclear 

waste storage site. One of the important points to be considered is the problem of the evaluation of uncertainties 

concerning safety indicators (“output parameters”) which are due to uncertainties concerning properties of the 

subsoil, such as hydraulic conductivity, or of the contaminants (“input parameters”). Uncertainties about the 

input parameters are due to imprecisions of measurement techniques or to spatial variability. Safety indicators 

may be for instance the measure of the water flow through outlet channels or concentration measures. 

  Two different aspects of the quantification of the influence of the parameters on the safety indicators 

are uncertainty analysis, which corresponds to the quantification of the uncertainty concerning the indicators 

(for example in the form of distributions or quantiles) and sensitivity analysis, which corresponds to the 

identification of the weight of the input parameters with respect to  their influence on the indicators. For 

sensitivity analysis, probabilistic approaches,  such as Monte-Carlo methods, can be used. These methods give 

good results and are relatively easy to implement, but they are expensive because they require a large number of 

simulations (see for example [1,2]). The deterministic method investigated here is much less demanding in 

computing time but it gives only local information: for nonlinear problems, the results obtained will be correct 

only for small variations of the input parameters (relatively to the nonlinearity) around a particular set of input 

parameters. 

  For deterministic methods, “first order” uncertainties are computed from the derivatives of the function 

F relating the output parameters to the input parameters. Different methods can be used for differentiation: 

divided differences, automatic differentiation, analytic differentiation for possibly implicit problems. For each 

method, direct mode or reverse mode (reverse mode is equivalent to the adjoint state method), can be used. 

These derivatives can be used combined with interval arithmetic to evaluate uncertainties in the form of 

intervals containing the image under F of input intervals, see [3]. 

  The derivatives of F are stored in the Jacobian matrix J. The hierarchization of the influences of the 

inputs of the function upon their influence on the outputs of the function is provided by the singular value 

decomposition (SVD) of J. The Singular Value Decomposition can also be used in probabilistic sensitivity 

analysis ([4]). 

  Thus the probabilistic and deterministic approaches are complementary and both deserve to be 

developed. In our study, we apply both approaches to the same problem. 

 

  We will present our discretized model for flow and transport in porous media. The flow equation is 

based on the stationary Darcy law and is discretized with a mixed hybrid finite element method. The transport 

equation consists of a mass balance equation for each contaminant and a law of exchange between liquid and 

solid phases for each contaminant. 

  We will give some details about the computation of the derivatives used for the deterministic analysis. 

For the flow equation we use a C++ code which has been differentiated with analytical formulas, using the 

adjoint state method. For the transport equation we combine manual differentiation and automatic 

differentiation. For automatic differentiation we use the library AdolC ([5]). The singular value decomposition 

of the Jacobian matrices, computed with LAPACK, provide a (weighted) hierarchical list of directions in both 

the space of input parameters and in the space of safety indicators. Then a truncated computation of the 

uncertainties on the outputs is possible.  

 

  For the flow model, various deterministic studies have been computed for a 3 dimensional test case. 

We observe a weak variability of the local sensitivities when the choice of the input parameters varies in the 

spectrum of possible input parameters. This is due to the weak nonlinearity of the model, assured by the choice 

of a logarithmic parameterization. In this case, probabilistic and deterministic studies provide similar results. We 
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also confront numerical results obtained using a deterministic analysis with those obtained using a probabilistic 

analysis  for the full model. 
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Hardfacing is the deposition of a filler metal on the surface of a base metal. Its purpose is to provide the 

properties or dimensions necessary to meet a given service requirements. The basic requirements are higher 

wear resistance, resistance to corrosion and resistance to deformation at elevated temperatures. Hardfacing is 

applied to the contact surfaces of the valve seats and movable guiding elements of valves in order to ensure and 

maintain for a long period of time “tightness of the body / disc – seating areas of valves” with the functions of 

closing, opening, throttling and controlling. Hardfacing by means of cobalt base alloys to obtain wear-resistant 

surfaces has been used in the valve industry since the twenties [1, 2].  
Among the various welding processes that are used for the hardfacing of valve seats, plasma 

transferred arc hardfacing (PTA) is popularly employed because of its inherent advantages like high deposition 

rate, low penetration and dilution, and smooth weld surface profile with minimum finishing [3]. The selection of 

appropriate values of process parameters to get the desired quality of hardfaced layer is very important. The 

successful hardfacing requires optimization of the process parameters to have low dilution and a crack free 

overlay, which necessiates a thorough understanding of the process characteristics affecting the technological 

and metallurgical characteristics of the overlays. With a view to solve the above difficulties faced in PTA 

hardfacing of valve seat rings, an attempt was made to study in detail the various aspects such as mathematical 

modeling, optimization, and sensitivity analysis.  

 The independently controllable process parameters affecting the bead geometry and quality were 

identified to enable the carrying out of the experimental work and developing the mathematical models, these 

being:  Welding current (A); Travel speed (S); Powder feed rate (F); Oscillation frequency (H); and Torch stand 

off (N). An automatic PTA surfacing system designed and fabricated by M/s Primo Automation System was 

employed to conduct experiments at M/s KSB Pumps Limited, Coimbatore. Hardfacing was carried out by 

depositing stellite -6 (Co-Cr.-A) onto carbon steel (ASTM-A105) ring of inner dia 93 mm, outer dia 120 mm 

and thickness 20.5 mm. The experiments were conducted by depositing a single layer with electrode negative 

(DCEN). Industrially pure Argon at a constant flow rate of 15 lpm for shielding, 5 lpm for Plasma, and 3 lpm 

for powder feeding were used. The selected design matrix was a central composite rotatable factorial design [4] 

consisting of 32 sets of coded conditions. Transverse cut specimens were obtained from the hardfaced valve seat 

rings and the bead profiles were traced as per the standard metallurgical procedures. Regression analysis was 

used to develop second order quadratic mathematical models to relate the process variables with the important 

bead parameters, namely, penetration (P), reinforcement (R), percentage dilution (%D), bead width (W), and 

total area (TA).  

The adequacy of those models was tested using F-test and R-test [5]. Validation of those models was 

further tested by drawing scatter diagrams, calculating R2 values and conducting conformity test runs and the 

average accuracy of the models was found to be about 95%. The direct and interaction effects of the process 

variables on each of the above response were studied and represented as two-dimensional plots.  

 The main purpose of this study is to minimize the percentage of dilution of the bead geometry using 

other important bead parameters with their limits as constraints, in order to retain the metallurgical properties of 

deposited metal. The model is a nonlinear equation with constraints. The step-by-step procedure for 

minimization of dilution using the optimization module available in the toolbox of the MATLAB version 7.1 

software packages was used. The objective function selected for optimization was the percentage of dilution. 

The bead parameters like penetration, reinforcement, width and total bead area were given as constraints of the 

equation. The optimum value of the percentage dilution was observed to be 2.05 with corresponding process 

variables of Welding current = 131 Amps; Travel speed = 124 mm/min; Powder feed rate = 24 grams/min; 

Oscillation frequency = 53 cycles/min; and Torch standoff = 6.5mm. 

 The following are the basic parametric changes affecting the optimum solution [6]. 

1. Changes in the levels of process parameters 

2. Changes in the values of the constraints 

3. The effect of including additional constraints 

4. The effect of including additional variables 

A thorough discussion of all the above changes is more tedious. Out of the four changes, the most 

common change that takes place in many problems are the change in the values of the constraints [7]. i e. the 

change in the value of the upper or lower limits of constraints. It is important to know what happens to the 

optimum value of the objective function when the constraint limits are changed. LaGrange multipliers provide 
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information of sensitivity analysis and for the study on the benefit of relaxing a constraint or the penalty 

associated with the objective function. 

 Sensitivity analysis was carried out to predict the direct effects of important bead parameters on 

percentage dilution and the results are presented in graphical form. The results of the sensitivity analysis are 

much useful in understanding the interdependence of various weld bead quality parameters in controlling the 

percentage dilution to enhance the metallurgical properties and hardfacing quality. The sensitivity analysis of 

percentage dilution due to the change in the limits of constraints were recorded and analyzed.    

 

Acknowledgment: 

 The authors are thankful to M/s. K S B Pumps and valves Limited, Coimbatore, India, for their 

technical support and the facilities extended to them in carrying out the above work. The All India Council for 

Technical Education, New Delhi is gratefully acknowledged for their financial support. The Authors thank the 

management of Coimbatore Institute of Technology, Coimbatore for having provided all the necessary 

infrastructural facilities to carryout this work. 

 

References  

 

[1] Parmar RS: “Welding Processes and Technology”, Khanna Publishers, 2nd Edition, New Delhi, 2003. 

 

[2] Grainger S “Engineering Coatings- Design and Application”, 2nd Edition, Abington Publishing, Cambridge, 

UK, 1994. 

 

[3] WU JBC, Redman JE: “Hardfacing with Cobalt and Nickel alloys”, Welding Journal, Vol.9, September 

1994, pp 63-67. 

 

[4] Cochran WG, Cox GM: “Experimental Designs”, Asia Publishing House, India, 1999. 

 

[5] Murugan N, Parmar RS: “Effects of MIG process parameters on the geometry of the bead in the automatic 

surfacing of stainless steel, Jl. of Material Processing Technology”, Vol.41, 1994, pp 381-398. 

 

[6] Gunaraj V, Murugan N: “Prediction and optimization of weld beam volume for the submerged arc process  

      – Part 1”, Welding Journal, October 2000, pp 286s-294s. 

 

[7] Gunaraj V, Murugan N: “Prediction and optimization of weld beam volume for the submerged arc process  

     – Part 2”, Welding Journal, November 2000, pp 331s-337s.  

 

 



 123 

CONSTRUCT: A FRAMEWORK FOR CONCEPTUALLY STRUCTURING A 

MODEL 
 

E.C. Meuter* 

Plant Production Systems, Wageningen University, the Netherlands 

eelco.meuter@wur.nl 

 

A model represents the developer’s understanding of a system under research. It encapsulates the 

builder’s knowledge, assumptions and hypotheses that can be tested against a data set of observable phenomena 

that is collected with similar objectives. In order to reuse or select a model, one must understand its original 

intentions and assumptions as well as understanding its behaviour. Within the domain of crop modelling, models 

with different detail consists of many processes that can be modelled differently. In order to understand and 

compare the different implementations of processes within a crop model, we designed a framework called 

CONSTRUCT, CONceptually STRUCTuring a model.  

The idea behind CONSTRUCT is that a model is built upon concepts: explicitly defined system 

elements that reflect the understanding of a particular part of the system. The definition of a concept consists of 

two parts: the semantic meaning of a concept and its interrelations with other concepts. The interrelation of a 

concept with other concepts is explicitly defined as it holds the assumption and understanding of this particular 

element within the overall system. A concept can have multiple interrelations, each defining one assumption. 

Suppose one would like to model the development of biomass among the different plant organs over time. When 

the framework holds three different algorithms for calculating biomass accumulation and two for partitioning, 

the framework will yield six models that could model the proposed objective. This outcome can be reduced by 

refining the objective so that algorithms are rejected based upon the definition of the concepts used.  

Models can also be rejected based upon their performance. When a model structure provides an 

acceptable representation of the researchers understanding of the system, the analysis of model input against a 

representative data set is the next step in model selection. In order to understand the influence of input 

variability we propose to use evolutionary algorithms like SCEM-UA to examine the entire range of acceptable 

inputs for a given set of concepts. The observed phenomena are given a set of statistically independent errors 

with a zero expectation and a constant variance. The result of this analysis will not yield a single parameter set, 

but a set of solutions corresponding to a given objective. In general, the objective is to minimise the error 

between modelled and observed signals. A closer analysis on the outcome of this analysis and the behaviour of 

the different concepts could also lead to a redefinition of the concept itself, which would then lead to new model 

structures. 

CONSTRUCT provides a tool to analyse and model systems based upon the researchers intentions, 

hypothesis and system understanding. The framework uses a clear separation between the conceptual and 

computational aspects of model development in order to reveal the complexity of a system and allow the 

researcher to assess the appropriateness of a particular model structure by means of its performance, the 

assumptions made within a model and input variance in relation to the observed phenomena. 
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We present a novel method for parameter sensitivity identification based on the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) optimization procedure [1]. Our method directly uses the information that is 

acquired during an optimization process to provide local and global parameter sensitivity estimates with no 

additional evaluations of the cost function. To demonstrate the performance of the method, we consider a 

complex example from cell biology, namely a TCR-activated signal transduction network. For this network, 

different global sensitivity indices are known [2]. 

The CMA-ES is a powerful evolutionary algorithm for non-linear, non-convex optimization problems. It has 

successfully been applied in a variety of domains ranging from lens design in optics [3] over computation of 

Nash equilibria in economics [4] to design of cancer chemotherapies [5]. Moreover, the CMA-ES has 

demonstrated unique performance in robust parameter estimation for biochemical network models [6].   

The CMA-ES comprises a local sampling with a multivariate normal distribution to form the new generation of 

sampling points. The covariance matrix of the sample distribution is hereby continuously adapted in order to 

bias the search toward the most likely direction of the global optimum [7]. For each generation, this allows us to 

estimate a local sensitivity measure, centered around the mean position of the particles at that generation. Our 

estimator uses the classical coefficient of determination, corresponding to a good measure for a local 

linearization of the objective function. In order to reconstruct a rank-based measure for first order sensitivity 

indices we compute a weighted average of the local sensitivities along the CMA search path. The weights are 

determined by an importance sampling of the local indices. In each generation of the optimizer, the common 

weight of the sampling points is given by the determinant of the current CMA covariance matrix. 

 

The proposed novel sensitivity measure hence reads:  

  

 
with : 

 

  Index of the generation 

 Number of generation during the search 

 Covariance matrix of the gth generation 

p Dimensioniality of the parameter space 

 First order rank-based sensitivity index for paramter j 

 Sampling points of generation g 

 Objective function 

 

 

As a benchmark problem, we study a TCR-activated Erk-MAPK signal transduction pathway in biological cells. 

The pathway model consists of a set of 24 ordinary differential equations with 49 free parameters. After 

estimating the model parameters with a genetic algorithm, Zhang and Rundell [2] derived parameter sensitivities 

using a variety of methods, including Sobol’s method and Extended FAST [8], using 200 000 sample points. In 

order to test our parameter sensitivity scheme we evaluate a total of 80 000 sample points. This is done in 20 

independent CMA-ES runs. Each run starts at different random points in parameter space, running over 4 000 

samples each. All runs are conducted with standard strategy parameter settings as suggested in [7]. The global 

parameter sensitivity indices of each run are normalized and summed up to give the overall global parameter 

sensitivity indices as shown in Fig. 1. Given the  reduced sample size our results are in good agreement 

(correlation coefficient 0.8) with the Extended FAST total effect indices (Fig. 2), which are considered the 

benchmark sensitivity measure. In addition, our CMA-ES optimization has found a new set of model parameters 

that significantly improve the model quality. 
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                       Figure 1: Parameter sensitivity ranks derived from the CMA-based sensitivity analysis  

                       given a total of 80 000 sample points  

 

 
                       Figure 2: Parameter sensitivity ranks derived from Extended FAST total effect indices 

                       given a total of 200 000 sample poins. The indices have been taken from [2].  
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An index over countries is a numerical scale used to compare countries with one another or with some reference 

number based on one or more specified aspects. Often an index is used in the decision making of policymakers, 

because it provides policymakers with information about the monitoring of countries progresses in a given policy 

field. There are several institutions (UNDP, WEF, World Bank, etc.) that elicit indices. When policymakers use an 

index in their decision making it is important that the index is independent from the institution eliciting it. The index 

must be a single unambiguous number which captures the facts of the specified aspects and or the different opinions 

of stakeholders about the specified aspects. 

 

The methods usually applied for eliciting an index often make use of surveys and statistical data. In the surveys 

respondents are asked to judge the countries based on a specified aspect. The judgment is based on a scale defined 

by the institutions. The judgments over the specified aspects together with the statistical data are first normalized to 

uniform scale and then aggregated using an arbitrary set of weights to create an index. This method reflects the 

preference of the institution rather then the preferences of the stakeholders, even though the preferences of 

stakeholders may be captured by the use of surveys. The institutions eliciting an index directly impose their 

preferences of the several aspects of an country by the use of normalization and the selection of a set of arbitrary 

weights, because they decide what is important and what is not.  

 

The statistical data used may also be irrelevant in the elicitation of an index. Statistical data become irrelevant if 

either the data do not reflect any of the specified aspects or if the data only reflect the specified aspects for a subset 

of countries.  

 

These considerations motivated a search for alternative methods for developing indices over countries. In this 

research the Global Competitiveness Index elicited by the World Economic Forum (WEF) is considered as a test 

case. Every year the WEF elicits a Global Competitiveness Index (GCI).This index is meant to measure the amount 

of competitiveness of each country and to shed some light on why some countries grow and others do not in terms of 

macroeconomics, institution, and technology. Competitiveness is defined as the set of institutions, policies, and 

factors that determine the level of productivity of a country. 

 

The main objective of this research was to get an index for a set of countries based on preferences of respondents on 

these countries given the aspect competitiveness. The first phase is to ask respondents to provide us with their 

preferences on the objects. Initially these respondents will not be actual stakeholders, but are used to test the method 

of this research. To elicit the preferences of the respondents the Law of Comparative Judgment is used. 

 

In the second phase of this research, the index obtained via the Law of Comparative Judgment is compared with the 

index from the World Economic Forum to determine if there is any correlation between the two indices. Finally 

regression is used to select statistical data that are relevant to the aspect competitiveness of the set of countries. The 

coefficients obtained from the regression analysis can be seen as the weights selected by the World Economic 

Forum. Finally, new techniques of probabilistic inversion will be used to quantify regression coefficients directly, 

without recourse to the Law of comparative Judgment. 
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The cell cycle is the sequence of events by which a growing cell replicates all of its components and divides 

them into two sister cells. The eukaryotic cell division cycle is driven by an underlying molecular network, 

which is centred around complexes of cyclin-dependent kinases (Cdk) and cyclins. In phase G1, the cell is 

growing in its cytoplasmic mass, which causes a slow but steady accumulation of Cdk/Cyclin activities. The 

DNA is duplicated in phase S, which is followed by the next growing phase G2. In the subsequent M phase 

(mitosis), the chromosomes are separated and the cell division takes place.  

Csikász-Nagy et al. [1] have created a generic cell cycle model that is able to simulate several types of living 

cells in such a way that for each cell type the differential-algebraic system of equations are identical, but the 

values of the parameters are different. This common system of differential-algebraic equations contains 14 

variables and 86 parameters. In our studies, parameter sets related to budding yeast, fission yeast and mammal 

cells were investigated. Since measured concentrationtime curves are not available for these cells, a parameter 

set was considered successful, if the corresponding model simulates a proliferating cell. Otherwise, the modelled 

cell was considered dead. The requirement for a living cell was to produce 4 cell divisions in 1000 minutes and 

at least one division in the last 280 minutes. 

First, the parameters were changed one-at-a-time, while all the other parameters were kept constant at their 

nominal values. Increasing or decreasing a parameter by four orders of magnitude, the limits were explored 

where the cell is still alive. Some parameters could be changed by 4 orders of magnitude; these parameters are 

non-influential or control the time-profiles of concentrations that are not critical for the cell cycle. Other 

parameters could be decreased, but increasing them kills the cell, while opposite behaviour was found for 

another group parameters. Since increasing a parameter may have positive or negative effect on the flux of a 

pathway, these are typical patterns of parameter influence when the role of a decreased flux pathway can be 

taken over by another parallel path, but increasing the flux of this pathway causes damage. For the fourth group 

of parameters, their values could be changed in a narrow window only, indicating their critical role. The results 

of the classification according to the four groups above were similar for most parameters for each cell type. 

However, there were 13 parameters with different classification for different types of cells.  

To investigate parameter interaction, Monte Carlo analyses of the three cell type models were carried out. 

For each model, ten thousand parameter sets were generated using Latin hypercube sampling assuming log-

uniform distribution, within the limits assigned by the single parameter changes. In the cases of fission yeast, 

mammal and budding yeast cells only 53, 44, and 69 parameter sets, respectively, were found that produced 

living cells out of the 10000. In order to explore if increasing a parameter value can be compensated by a 

systematic change of another parameter to keep the cell alive, correlation of these parameter values was 

investigated. The ten-based logarithms of the multiplication factors of the nominal parameter values were 

arranged to a matrix in such a way, that each row corresponded to a living cell and each column to a parameter. 

Then, the correlations of the column vectors were calculated. The Figure shows a typical example for such 

correlations for fission yeast cells. The correlation coefficient for parameters kd20 and ki20 is –0.48. Both 

parameters control the concentration of enzyme Cdc20. If the values of these parameters are simultaneously 

low, it causes an early rise of the concentration of Cdc20, therefore the cell cycle gets stuck in phase G1. For the 

definition of parameter names please refer to reference [1]. 

Correlations with absolute values higher than 0.4 were investigated in details. For the fission yeast model, 

high correlation was found also for parameters Jah1 and kah1p (correlation coefficient –0.44), both are 

controlling the concentration of Cdh1. Other highly correlated parameters are Jawee and kdapp (–0.43, both are 

controlling the length of phase M); parameters Jatf and ksapp (+0.42, both are controlling the concentration of 

active cyclin A); parameters ka25 and ksbp (–0.42, both are controlling the concentration of active MPF); 

parameters ksbpp and SK (–0.46, controlling the length of phases G1 and G2).  

In the case of the mammal cell model, high correlation was found for parameters ksepp and katfppp (+0,51), 

which are indirectly and directly, respectively, control the production of transcription factor TFE; parameters 

kdepp and katfppp (–0.43), which control the production of cyclin E; parameters J20 and kitfpp (+0.43), which 

both indirectly control the level of cyclin A; parameters kah1pp and SK (–0.53), which affect the activity of 

Cdh1. Increasing the values of both parameters kdipp and SK (–0.47) increase the decay of CKI. If the values of 

both parameters are low, the high CKI concentration results in a halt in phase G1. No high correlation was 

found between the parameters of the budding yeast model.  
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Figure: Values of parameters kd20 and ki20 that simulate proliferating fission yeast cells when all other 

parameters are also changed simultaneously. The axes are the logarithms of the multiplication factors of the 

original parameter values. 

 

Conclusion: The division cycles of budding yeast, fission yeast, and mammal cells are frequently investigated 

experimentally and are subjects of vigorous modelling activity. Recently a unified model was published [1] that 

can simulate the cycles of the above three types of cells using the same system of algebraic-differential 

equations and different parameter sets. This generic cell cycle model was investigated by systematic changes of 

parameters. The aim was to find altered parameter sets that also describe living and proliferating cells. Monte 

Carlo analysis with Latin hypercube sampling was used, and the correlating parameters were identified. For 

these parameters, either some combinations are not valid or the effect of increasing of one parameter can be 

compensated by increasing or decreasing another parameter. The identified positive and negative parameter 

correlations were elucidated knowing the details of the regulating cycles. An unexpected result of this study is 

that in spite of the common structure of the three models, very different correlations were found for the three 

types of cells. 
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In a chemistry model, the output concentrations of chemical species are inter-correlated by various constraints: 

the structure of the chemical network, the conservations laws (mass, energy...). Additional correlations result 

from uncertain input parameters. For instance, the branching ratios describing the partition of products in 

multipathway reactions have to obbey a sum rule. 

Taking into account correlations of input parameters is known to be essential to quantitative uncertainty 

propagation and sensitivity analysis. The sum rules for more than two parameters has been recently noted as an 

issue for complex chemical systems [1]. 

In this work, we present two aspects of uncertainties correlations in complex chemical systems: 

7. the effect of a proper description of the correlations between branching ratios [2,3]. We propose the use 

of a Dirichlet distribution, and we show that neglecting the sum rule can lead to under- or over-estimation 

of the output uncertainties, depending on the predicted property (Fig. 1). Globally, the uncertainty budget is 

quite sensitive to this description. 

8. the effect of the correlation between the concentrations of reactants issued from a previous chemistry 

model [4]. In our system, we observed no effect of this source of input correlation on output uncertainties, 

but only a correlation transfer from inputs to outputs. 

 

 

Figure 5: Time-resolved concentrations for two parallel unimolecular reactions XY1 (b1*k) and XY2 (b2*k), 

where k is the global rate constant and b1, b2 are the branching ratios. (a) exact representation of the branching 

ratios correlation by a Dirichlet distribution; (b) uncorrelated branching ratios. Whereas the neglect of the 

correlation leads to an overestimation of the uncertainty about [X], an underestimation is observed for the final 

products. 
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Control of mechanical effects of welding is one of the main stakes of industrial company and especially in the 

nuclear field. The robust increase in computer power allows nowadays simulating a complex welded assembly 

on a personal computer, in order to predict, from the conception stage, if mechanical requirements are reached. 

For the scientist community, simulation of coupled multiphysic phenomena and model unification are the most 

challenging to understand. The industrial requirements are more and more numerous: supports to develop new 

processes, control of mechanical welding effects (in particular, residual stresses and distortions), argument in a 

nuclear safety analysis reports, etc. Thus, through the use of high-performance computers and advanced models, 

numerical simulation is expected to become an important tool for innovation in welding engineering. 

 

However, running a welding simulation requires a large number of inputs - about 500 - including for example 

meshing inputs, boundary and initial conditions as well as material properties and process parameters, and 

generates several outputs, including spatial distributions of displacements and residual stresses in the weldment. 

Among inputs those controlling the material properties are one of the key problems of welding simulation. The 

features of material properties are that they are dependent on temperature and that their full characterization is 

very expensive, often difficult or even sometime impossible. For instance, it can take several weeks to 

characterize a specific material without anyway knowing if these data are influent and in which range of 

temperature. Furthermore, it is quite difficult to use material data published in technical literature, which have 

almost never been characterized over a sufficiently wide temperature range. To circumvent this problem, most 

welding modellers content themselves with available material data and use extrapolated values at high 

temperature. In this context, we think that one of the main stakes is to determine which material properties are 

the most sensitive in a numerical welding simulation and in which range of temperature. 

 

To bring answers to these questions, one classically performs a local sensitivity analysis on a limited number of 

materials. This type of study consists in measuring the effect of small variations of input data controlling 

material properties on the output of the computer code. But validity of the results is limited to the 

neighbourhood of the studied material(s) and cannot be generalized to others. A more ambitious approach is to 

perform a global sensitivity analysis [1] to explore the input space covering welding of different steel materials. 

Using this methodology require some developments to sample hundreds of materials, to schedule launching of 

the welding numerical experiments, and to realize the linear sensitivity analysis. Several sampling methods were 

tested and we finally adopted a Latin Hypercube Sampling (LHS) strategy to generate m fictitious material 

properties ([2], [3]). Because of their dependence on temperature, it has been required to sample each material 

property at a discrete set of n temperature. Thus, (mn) inputs were considered in the global sensitivity 

analysis. Indeed, each of the m material property used in this model are either monotonically increasing or 

monotonically decreasing as function of temperature and we have developed a LHS that respect this condition. 

Finally, hundreds of model evaluations were performed using the Finite Element Method (FEM) and the 

Cast3M software [4]. We must note that the computer model we address here is deterministic, i.e. replicate 

observations from running the code with the same inputs give identical outputs. The representativeness of the 

sample size has been studied using a bootstrap method on empirical statistical moments estimation. We can see 

in fig. 1 that sample with size 600 or more is reasonable. Sampling of materials properties and global sensitivity 

analysis were conducted using R software ([5], [6]). Finally, inputs data have been divided in two groups: the 

group of influent data on which we must concentrate our efforts of characterization and the group of non-

influential factor. Thus, inputs having little influence on the output have been fixed and new model evaluations 

were performed in order to compare the reduced parametrization with the initial one. A good agreement was 

founded on the distortion output between full parametrized model and the reduced one, with correlation 

coefficient R > 99% (fig. 2). 

 

In this work, complete methodology of the global sensitivity analysis has been successfully applied to welding 

simulation and lead to reduce the input space to the only important variables Contrary to a common idea, this 

work show that input data controlling high temperature material properties (which are the most difficult and 

expensive to measure) were not influent on the mechanical effects of welding and can be excluded of the model. 

 

This seams to be a new and useful way of applying sensitivity analysis to validate model and especially 

mechanical models used in welding simulation. Sensitivity analysis has provided answers to what we consider 
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one of the probable frequently asked questions regarding welding simulation: for a given material which 

properties must be measured with a good accuracy and which ones can be simply extrapolated or taken from a 

similar material? 
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In ecology, due to the accelerated environmental change and increasing negative effects of land use, climate 

change on ecosystems there is an urgent need both for understanding fundamental processes in ecology and for 

the development of concepts for long term sustainable land use. 

Simulation models in ecology are ideal tools to address ecological questions, as they are able to integrate 

longer time and spatial scales, formalizing the existing knowledge and to test different hypothesis related both to 

basic or applied questions. 

However, simulation models in ecology in general face several severe problems: they deal with complex, 

open, and stochastic systems; additionally the details of prevailing processes are often not known, and parameter 

estimation in general is poor due to lack of empirical data, or due to the difficulties to measure parameters 

directly. Depending on the investigated question, ecological models have to integrate certain complexity, e.g. if 

they investigate applied questions. Additionally, to the need to use structural realistic models, a biological 

plausible parameterization is required to generate results which lie within a realistic range. Such a simulation 

model may be that complex that it faces severe problems of uncertain parameters and scarce amount of field 

data to estimate these parameters. 

We present a method to face such problems of complexity, using a multi-criterial approach of pattern-

oriented modelling (POM, Grimm et al. [1]) to parameterize indirectly a complex simulation model including 

thirty uncertain parameters. The first approach for such a parameterization was developed by Wiegand et al. [2] 

for a less complex model, and is now extended to models of higher complexity and uncertainty (Pütz[3]).  

The presented pattern oriented parameterization method uses a Monte Carlo Filtering approach, restricting 

the parameter space by using binary error measures to decide if the inference matches the empirical pattern, 

which act as a filter for the simulated output. A pattern is defined as a non-random variable, e.g. a trait of one 

dominant species within an ecosystem, which maybe directly compared to one implemented variable of the 

simulation model. Due to the scarcity of the data, the patterns are bootstrapped for developing statistical criteria 

which model parameterization is accepted. These pattern are used from different hierarchical levels of the 

ecosystem, e.g. from the individual level of one species, to the population, patch or landscape level, using all 

obtainable of the scarce information. 

The advantage of this approach is, that we obtain not only biologically plausible model parameterizations, 

but we also obtain indirectly information about biological and demographic processes at lower levels, e.g. 

emergence of new individuals, growth, mortality and other ecological processes, by further sensitivity analysis 

of the posterior parameter distribution. 

 The result of this indirect parameterization approach is the gain of strong confidence into the model and the 

ability to use the model to investigate applied questions. We show the high potential of this approach by means 

of a grazing model which was developed to investigate the interaction of grazing with stochastic climate in a 

semiarid ecosystem in Patagonia (Argentine) to assess its degradation risk.  

The presented approach bridges the important gap between theoretical and empirical ecology by allowing to 

tie a simulation model closely to field data and thus leading to reasonable parameter values and ensuring 

biologically reasonable behaviour.  

The presented a multi-criterial, hierarchical pattern oriented approach improves strongly model selection, and 

thus might be of general interest for simulation models, facing high uncertainties with the need to compare the 

simulated output with empirical data. 
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Integrated Assessment Modelling (IAM) incorporates knowledge from different disciplines to provide an 

overarching assessment of the impact of different management decisions. Such modelling methods generally 

require the specification of values for numerous parameters from varying sources, many not known with 

certainty. Rapid increases in model size and complexity, particularly in the case of integrated models for 

decision-making, pose new challenges for effective sensitivity analysis. As IAM methods are increasingly being 

used to inform environmental management decisions, it is important that there are sensitivity analysis methods 

which cater to the challenges posed by these models. Some of the identified shortcomings of existing sensitivity 

analysis methods in the context of IAM include: computational inefficiency, failure to properly assess parameter 

interactions, excessive data requirements (e.g. requiring parameter probability distributions), assumptions of 

model linearity and monotonicity and in particular difficulty of application for models used in decision-making.  

 

The Management Option Rank-Equivalence (MORE) method is a new, rank-equivalence method of sensitivity 

analysis [1] developed specifically to address the difficulty of applying sensitivity analysis to IAM. While 

sensitivity analysis methods tend to address the sensitivity of model outputs to the parameter and model inputs, 

the MORE method investigates the sensitivity of the management decision, which the model is used for, to 

changes in the model parameters. The method operates on the premise that IAM used in decision-making 

facilitates the ranking of potential management solutions, based on their efficacy of solving the particular 

management problem, in order to determine the most effective management solution. When used for decision 

making, it is important to ensure that the solution is robust and that management option rankings will not alter 

with small changes in model inputs.  

 

The MORE method of sensitivity analysis incorporates numerical optimization techniques in order to find the 

minimum and maximum combined change in parameters that will result in the ranking of two management 

options becoming equal, thus altering the preferred decision. The set of parameter vectors for which the two 

management options are equally ranked is referred to as the rank-equivalence boundary, as it separates the set of 

parameter vectors where the management decision would alter from the original solution, from those where it 

would not. To overcome the difficulty of characterizing the entire rank-equivalence boundary, The MORE 

method constructs two artificial boundaries based on the minimum and maximum combined change in 

parameters to reach the rank-equivalence boundary, providing a decision maker with information about the 

robustness of management solutions given different parameter vector locations as well as characterizing the 

amount of sensitivity variation in different parameter directions. 

 

While the MORE method enables assessment of the amount of variation of the model sensitivity in different 

parameter directions, little information is given regarding the change in sensitivity in a particular direction. 

Further, while MORE sensitivity analysis locates only the minimum parameter change to reach the rank-

equivalence boundary, it is possible that there will be several local minima on the rank-equivalence boundary. 

These locations represent critical points on the rank-equivalence boundary, as they can be reached through small 

changes in parameter values, which may be similar in value to the minimum combined parameter change, but 

occur in a different direction in parameter space, thus having different ratios between individual parameter 

changes. Location of these critical points on the rank-equivalence boundary provides increased information 

regarding the sensitivity of the decision to changes in individual parameters.  

 

This research proposes an extension to the MORE method, which allows further investigation into the variation 

of the sensitivity of the model in different parameter directions. In order to locate several critical parameter 

combinations on the rank-equivalence boundary, a multi-objective, Pareto-optimal search is performed. During 

the Pareto optimization, the minimization of each individual parameter change is defined as an individual search 

objective and a constraint is set to restrict solutions to the rank-equivalence boundary. A solution x2 is then 

considered to be Pareto optimal if it is at least equal to solution x1 in all objectives, and better than the solution 

x1 in at least one objective. Unlike a weighted combination of the objectives, a Pareto optimal search will 

identify many locations on the rank-equivalence boundary, thus determining a collection of critical points on the 

rank-equivalence boundary. These critical points, rather than representing the minimum combined change in 

parameters, represent the minimum change in a single parameter, with simultaneous minimal changes in other 

parameters. Hence, this analysis recognizes that while there may be a single minimum change in combined 
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parameter values, it is likely that there will also be other critical parameter combinations in different directions 

in the parameter space.  

 

These critical locations can be used to gain further insights into the sensitivity of the decision to the individual 

model parameters. The collection of critical solutions gives a range of parameter changes to reach the rank-

equivalence boundary for each parameter. The frequency of the occurrence of a parameter change within a set 

range, gives an indication of the decision sensitivity to that particular parameter. A parameter with consistently 

small changes to reach the rank-equivalence boundary, shows that the decision is consistently sensitive to small 

changes in that particular parameter. In contrast, a parameter which has varying changes at the critical locations 

indicates that the decision sensitivity to that parameter is considerably impacted by changes in other model 

parameters. This allows model users to assess whether parameter uncertainties of individual parameters are 

within a range that allows confidence in management decisions based on model output. 

 

Use of the Pareto optimization does not require parameter standardization, as each parameter change is 

compared only with changes of the same parameter. In contrast, the original MORE method requires 

standardization of parameters as the individual parameter changes are summed to form a single value, in order 

to determine the minimum combined change to reach rank-equivalence. The removal of parameter 

standardization alleviates an additional source of variation that is present within the original MORE sensitivity 

analysis.  

 

The extension to the MORE method is investigated using a case study of an integrated catchment model of the 

Namoi Catchment in northern New South Wales, Australia. The results are compared with those obtained using 

the standard MORE method, as well as the FAST [2][3] and Sobol’ [4] methods of sensitivity analysis. For this 

case study the nondominated sorting Genetic Algorithm, NSGA-II [5], to obtain the non-dominated parameter 

vectors on the rank-equivalence boundary. NSGA-II incorporates elitism, allowing the best solutions from both 

the parent and daughter pools of chromosomes to be retained, as well as incorporating a crowding distance 

calculation, to ensure that solutions are spread out along the pareto front, rather than converging to a single 

solution. From this investigation, the extension to the MORE method proposed in this paper shows promise in 

supplementing the results provided by the MORE method and providing more extensive information on the 

sensitivity of a decision to changes in model parameters.  
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Complex mechanistic models for crop growth have been widely used to assess the sustainability of agricultural 

systems and the risk and impact of climatic change. Usually, these models are calibrated for site specific data, 

and may not apply in other circumstances due to the implicit empiricism. We carried out a global sensitivity 

analysis (SA) to rank the parameters of the STAMINA crop model in terms of their importance. STAMINA is a 

generic but complex cropping system model, which simulates agro-meteorology, hydrology, crop development 

and photosynthesis in hilly terrain [1] [2]. As model sensitivity depends on parameter variation and the 

environment [3] we were interested in the relative effects of the environmental drivers (soil and climate), when 

applying the SA to the rain-fed production of Triticum durum (Durum wheat, DW) in the Southern 

Mediterranean. Our main objective here was to analyze the effect of the environment, namely the effect of water 

availability (storage in the soil; rainfall) and differences in the a priori parameter distribution.  

Materials and methods 

The model sensitivity was determined for DW, (1) on a silty clay-loam in Volturino (Apulia Region, Italy), and 

(2) on a drought-prone sandy soil in Nabeul (Tunisia). The analysis used single event data (Italy, 2002-03; 

Tunisia, 1990/91) for separately calibrated parameter sets. We applied the Morris method [4], which is 

parsimonious in terms of number of model runs required and suitable for the STAMINA model due to the large 

number of parameters and complexity. The STAMINA software implements the WARMSIMLAB library 

analyzing the sensitivity of crop parameters and other inputs. For the Italian site, a maximum of 57 crop 

parameters were selected, characterised by mean values and standard deviation according to calibration, 

assuming a normal distribution. For the Tunisian site we reduced the number of parameters to 32. A maximum 

of 464 simulations were executed as a result of 8 trajectories and 4 levels. μ* and σ are the mean and standard 

deviation of the change in yield per change of parameter.  

Results 

In Volturino, 5 out of 57 parameters were not important for yield formation, in Nabeul 3 out of 32 crop 

parameters were irrelevant. For both sites, the range of μ* and σ spanned over several orders of magnitude and 

we display the results on a log-log scale. Parameters were grouped according to their role in the crop simulation: 

establishment, development, photosynthesis, partitioning, water stress and senescence. In Volturino, parameters 

which determine flowering date (Tbase, GDD), leaf area increase (Tbase, LAI0) and early allocation to the shoot 

were highly sensitive. Parameters for establishment ranked very highly overall, directly or indirectly (Figure 

1a). In Nabeul, among the top 15 ranks of sensitivity, four parameters were related to early growth (Figure 1b), 

four to plant development, and two each to photosynthesis and senescence (start, rate of wilting). Management 

(e.g. sowing date) can play a crucial role in mitigating the establishment characteristics of crops. 
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Figure 9 Graphical display of Morris sensitivity measures (μ*, σ) for crop model input parameters applied to 

durum wheat experiments in (a) Italy (Volturino, 2003), and (b) Tunisia (Nabeul; 1991) 
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The parameters on which CO2 assimilation depends were highly important in Nabeul (μ* >3000 for assimilation 

rate at light saturation, ~700 for initial light use efficiency), much less in Volturino (320). Both analyses 

revealed that the parameters for the temperature response curve of photosynthesis were less important. The 

water stress parameters ranked similar sensitivity (9 at Volturino; 12 at Nabeul), stomatal resistance ranked 18 at 

Nabeul.  

Averaging the parameter groups the overall ranking (Table 1) according to mean sensitivity (μ*) show that 

parameters describing early establishment (initial LAI, temperature factor for GLAI) had the greatest impact on 

yield of DW grown on a sandy soil in Tunisia, Overall, parameters related to crop establishment played a key 

role in the Mediterranean environment but in Volturino these parameters were less important than at Nabeul, 

possibly due to difference in soil. The sensitivity to parameters of dry matter partition is more important at 

Volturino than at Nabeul, however, some of these parameters were related to early leaf development.  

Table 2: Ranking of parameter groups according to mean Morris sensitivity (μ*) in relevance for 

yield formation of Durum wheat (DW) in Tunisia and Italy 

 Italy, Silty Clay Loam Tunisia, Loamy Sand  

Group Average μ* Average σ Average μ* Average σ 

Establishment 677 1035 1501 979 

Development 408 292 1063 1121 

Photosynthesis 113 95 591 380 

Water stress 755 488 380 415 

Senescence 336 264 362 326 

Partitioning 873 425 138 175 

Discussion 

The SA for our crop growth model emphasises the importance of early establishment for DW, which confirms 

other findings in the Mediterranean for wheat [5] and other crops [6]. It further highlights the importance of 

correctly simulating photosynthesis and crop development, however. The individual and the overall ranking of 

the parameter sensitivity can be different depending on the environment. At both sites, the time span of grain 

filling is critically determined by flowering date and the speed of maturation. The latter is determined by the 

onset of senescence and the senescence rate, in which the results of the SA agree very well for both 

environments, confirming that the duration of the late growth stages is important in Mediterranean conditions 

[7] either by management or variety selection. It is surprising that in both environments (soil in Volturino holds 

more water) the sensitivity to changes in the water stress parameter was similar.  

Further work will be presented that uses the same parameter sets in different environments and alters the soil 

and weather inputs within the range of variation typical for the region. More analysis is also needed on the 

artefacts possible in the SA related to (a) the variation of the parameters that are too small in relation to the 

mean value; or (b) parameters that are missed out because of a priori neglecting of a process.. Finally, parameter 

selection should avoid the model becoming over-parameterised and in the SA some parameters could be omitted 

as they are complementary, intimately linked, like phenology and partitioning, or sequential (growth stages).  
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The characterization of the soil hydraulic properties results indispensable in numerous hydrological applications 

and in the studies of many practical problems requiring a large spatial scale. It isn’t possible to perform always 

direct measurements of the soil hydraulic properties, because they are cost and time consuming and highly 

variable spatially and temporally [1]. Consequently, for their estimate the pedotransfer functions (PTFs) are 

often used; these utilize basic information that are translated easily in the simulation model [2]. However, the 

PTFs models provide predictions, influenced by uncertainties, which originate in the input variables 

(measurement errors, etc.) and in the simulation model. Many authors analyzed PTFs uncertainty and evaluated 

the effect on the output, using different methods [3] [4] [5] [6]. Minasny et. al. [7] showed that the PTFs model 

uncertainty, often produced by internal parameters and by utilized database, is usually small in comparison to 

the input variables, which  influence the output expectations by a propagation of the initial error. In this study 

the Monte Carlo (MC) method was utilized, by assuming the probability distribution of each input variable and 

by estimating that of the output variables. N. 30 undisturbed soil samplings were taken on the alluvial area of 

800 m2 (40 m x 20m), with a slope of 6 %, in the Turbolo basin, in Calabria (Italy). These samplings, with a 

diameter of 5.1 cm and height of 5.6 cm, were analyzed in the laboratory by using gravimetric method, where 

the values of the pressure head were fixed (pF = 0.00; 0.50; 1.00; 1.50; 2.00; 2.30; 2.80; 3.40; 4.20) and the 

corresponding values of  were determined. By the RETC code [8], for each sample, or rather for each location, 

assigned 
n

m
1

1  , the following parameters of unsaturated soil was obtained: saturated water content (s), 

residual water content (r), scaling parameter (), shape factor (n) and pressure head (h). These parameters are 

in the PTF of Van Genucten model, which represents the retention curve: 
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Given r = 0 and assuming for the other input parameters a normal distribution, on the basis of the statistical 

tests (Pearson, Shapiro-Wilk, Kolmogorov-Smirnov) for a confidence level of 95%, the corresponding main 

statistical parameters are reported in the following Tab. 1: 

Tab. 1: Main statistical parameters of the input variables of  Eq. (1). 

 Parameters s H  N 

Mean                            0.357446071 1.966667 0.334489286 3.57264142857143 

Median                            0.35471 2 0.323255 3.729735 

Standard Deviation              0.028203783 1.370219 0.057598041 0.722674 

Variance                        0.000795453 1.8775 0.003317534 0.522258 

Coefficient of Variation        0.078903605 0.696722 0.172196969 0.20228 

Skewness                        0.171869081 0.183251 3.868204791 -1.13398 

 

Successively, the uncertainty analysis (UA) and the sensitivity analysis (SA) were carried out on the model, by 

using following methods: FAST, Random, Latin Hypercube, Sobol, Morris [9]. The FAST method performs the 

SA, by estimating the sensitivity indexes like main effects (or first order indexes) and total order indexes, as 

shown in Tab. 2. 

Tab. 2: FAST sensitivity indexes. 

 (h) 

 Fast first order indexes Fast total order Indexes 

s  0.0644 0.090503 

 0.0726 0.125671 

n  0.0015 0.033100 

h 0.8016 0.880219 

In Tab. 3, the SA results are reported for Random and Latin Hypercube methods; the ranks of the sensitivity 

indexes are shown in this table, according to Pearson, Spearman, Partial Correlation Coefficient, Partial Rank 
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Correlation Coefficient, Standardised Regression Coefficient, Standardised Rank Regression Coefficient, 

Smirnov.  

Tab. 3: SA for Random (R) and Latin Hypercube (LH) methods (confidence level of 95%). 

 PEAR SPEA PCC PRCC SRC SRRC Smirnov 

                     R L H R L H R L H R L H R L H R L H R L H 

s 3 3 2 3 3 3 2 3 3 3 2 2 1 1 

 2 2 3 2 2 2 3 2 2 2 3 3 3 3 

n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

h 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

 

Also SOBOL method is used and the results are shown in Tab. 4. 

Tab. 4: Sensitivity indexes of first and total order for the SOBOL method. 

                     

First order indexes Total order indexes 

(h) (h) 

 s 0.093091 0.067229 

        0.066166 0.174351 

 n -0.00335 0.02697 

 h 0.890363 0.994241 

 

Finally, in Fig. 1and in Tab. 5 results of Morris method are reported: 

Fig. 1: Trend  -  for Morris.                                                                        Tab. 5: Morris indexes.     

                                        

                     

(h) 

  

s 0.0533 0.0252 

 0.0967 0.0727 

N 0.0533 0.0364 

H 0.3301 0.1052 

 

 

 

This analysis was carried out by the SIMLAB 2.2 code [10]. The obtained results shown altogether for the PTF 

model (1) a not monotonic behaviour; moreover, referring to the considered model, only the pressure head h 

results clearly sensitive for the water content . 
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The analysis of finite mixture models is recently playing an important role in theoretical as well as in applied 

statistics (see, for example, Mclachlan and Peel [1] and Böhning and Seidel [2]). Mixture models are excellent 

tools that can be used to describe complex systems over a wide range of applications in many fields of 

knowledge. Since the advent of Markov Chain Monte Carlo (MCMC) methods, many advances have been 

achieved for the Bayesian analysis of finite mixture models.  

 

Inference of a probability distribution for lifetime data is necessary in any reliability analysis. Often this 

inference is complicated by the presence of multiple failure modes and variations in manufacturing that may 

create a heterogeneous component population. In these cases, standard distributions are inadequate. Mixture 

models provide additional modeling flexibility and have the physical interpretation of representing failures from 

a heterogeneous population. Titterington et al [3] give detailed references about mixtures for lifetime data.   

 

In spite of the modeling advantages, the practical implementation of finite mixture models sometimes introduces 

additional complexity because they often have many parameters and the calculations become difficult. Rufo et 

al [4] provided a general approach to address Bayesian analysis of finite mixture models of distributions from 

natural exponential families with quadratic variance function (NEF-QVF). Note that the families in this class are 

normal, gamma, hyperbolic-secant, Poisson, binomial and negative-binomial. This general approach solves the 

prior distribution choice and the unidentifiability problems in this kind of mixtures. However, a sensitivity 

analysis on the choice of the parameters in the prior distribution is needed. Most sensitivity analysis are informal 

ones and are based on changing the values in the prior parameters and observe how the output changes. This 

needs re-running the sampling algorithm for several parameter values with the corresponding computational 

cost. In this context, formal sensitivity analysis is a difficult task demanded by several authors. Pérez et al [5] 

proposed a computationally low-cost method to estimate local sensitivities in Bayesian models. This method is 

based on importance sampling and it requires to compute prior derivatives. It can be applied (but not only) to 

complex Bayesian models that need to be solved by MCMC methods, and it allows to estimate the sensitivity 

measures and their errors with no additional random sampling.  

 

In this work, a formal sensitivity analysis for the parameter values of the prior distribution in finite mixtures of 

distributions from NEF-QVF is described and applied. The derivatives that are needed to apply the method are 

obtained for all the distributions in this family class. This fact allows a direct implementation, and, therefore, the 

applicability to mixtures of lifetime distributions. The sensitivities are evaluated and give us information about a 

proper choice of the prior parameter values. This method can be applied in many applications arising in 

reliability contexts.  
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Latin Hypercube Sampling (LHS) [1] is widely used as sampling based method for probabilistic calculations in 

support of both uncertainty analyses and sensitivity analyses ([2], [3]). This method has some clear advantages 

over classical random sampling (RS) that derive from its efficient stratification properties. However, LHS is not 

perfect. One of its limitations is that it is not possible to extend the size of an initial sample by simply adding 

new simulations, as this will lead to a loss of the efficient stratification associated with LHS. We describe a new 

method to extend the size of an LHS to n (>=2) times its original size while preserving both the LHS structure 

and any induced correlations between the input parameters. This method involves introducing a refined grid for 

the original sample (Figure 1) and then filling in empty rows and columns with new data in a way that conserves 

both the LHS structure and any induced correlations (Figure 2). An estimate of the bounds of the resulting 

correlation between two variables is derived for n=2. This result shows that the final correlation gets closer to 

the average of the correlations from the original sample and the new sample used in the infilling of the empty 

rows and columns indicated above as the sample size increase. 
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Figure 10: refinement of original grid and selection of an area for extended LHS, respecting correlation 
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Figure 2: Random selection of points in authorized area for extended LHS 
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Parametric sensitivity analysis is applied here in the context of nonlinear regression parameter estimation 

in multi-response models. The predictions from these models are subject to uncertainties propagated from the 

estimated parameters using available experimental data. When the uncertainties associated with these estimates 

are unacceptably large, an alternative purpose of the experimental effort could be to reduce some or all of the 

parameter uncertainties that propagate into the model predictions. This situation motivates the parametric 

sensitivity analysis in regression parameter estimation. 

 

The conventional approach for summarizing parametric sensitivity of the predicted responses is through 

the use of the first-order derivatives of the predicted response(s) with respect to each parameter. These 

sensitivity coefficients can be termed as “marginal” sensitivities because they focus on individual parameters 

only. While they provide helpful insight into the estimation characteristics, they can be misleading when 

correlations among parameters exist.  

  

Sulieman et al. (Technometrics 43 (4), 2001) developed a new parametric sensitivity measure based on 

profiling algorithm used to assess parameter nonlinearities in regression models and to construct likelihood 

intervals for the individual parameters. They applied the measure to single-response nonlinear models and later 

extended the approach to assess parameter sensitivities in multi-response regression models. The profile-based 

sensitivity coefficient can be defined as the total derivative of the model response predicted function with 

respect to a parameter of interest, with the remaining parameters held at their conditional estimates. 

Consequently and in contrast with marginal sensitivity coefficient, the profile-based sensitivity measure 

accounts for both correlation structure among the parameters and model nonlinearity. It also provides sensitivity 

information over wide range of parameter uncertainties. 

 

In this paper, an overview of profile-based sensitivity measure for multi-response regression models and 

some related computational aspects are given. The new sensitivity approach is applied to regression models 

described by systems of Ordinary Differential Equations using Box-Draper determinant criterion for parameter 

estimation. Application of the approach is illustrated using a model formulated by the Dow Chemical Company 

to describe the kinetics of an isothermal batch reactor system. The following formulation of the model was 

studied by Biegler and Tjoa (1991) and is used here. 
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different settings and three response variables. A wide range of sensitivity behaviour is observed, including 

instances in which the traditional and profile-based sensitivity coefficients lead to different conclusions 

concerning the impact of a parameter of interest on the predicted responses from the model. 
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Recent numerical calculations on combustion and cell metabolism models suggest that ratios of 

sensitivities may show certain regularities and these relations might have deep meaning and consequences on 

the given chemical (combustion) or biological (cell cycle/metabolism) phenomena [1,3]. Here we give exact 

sufficient, necessary, and sufficient and necessary conditions for these regularities (local similarity, scaling 

relation, and global similarity) to hold. We also investigate the question, what happens if the conditions are only 

approximately fulfilled. 

Consider the parameter dependent initial value problem  

( , ) ( ( , ), ), (0, ) ,t t  0c' p f c p p c p c   

with 
2

0, , ( , ), .N P N NN P C   N f R R R c R Let us suppose, for the sake of simplicity, that the 

complete solution to all initial value problems are defined on the whole real line, and let the derivative of the ith 

coordinate function with respect to the kth parameter be denoted by .iks  These sensitivities are known to obey 

[2] the initial value problem  

1
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n

s t f t s t f c t s


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Parameters kp  and mp  are said to be locally similar with respect to the state variables ic and jc  

with the similarity function : P

ij  R R R , if for all 0c    i j j k i ks s   and also ij jm ims s   holds. A 

scaling relation is said to hold with respect to the state variables ic and jc  if for i,j and for all k and for all 0c  

' 'i jk j ikc s c s  is true. The parameters kp  and mp  are said to be globally similar with respect to the state 

variable with the similarity number ,ikm and they are uniformly globally similar, if the similarity number 

does not depend on i.   

The necessary and sufficient condition for the scaling relation to hold is the existence of functions 

, : N  R R such that ( ) ( , ) ( ) ( , )i jf f x x p x x p holds for all .Nx

If ,i jf f    then  

| ' ' |i jk j ik jk kc s c s K    with sup {| | | |} .N k k    
p

 

The necessary and sufficient condition for uniform global similarity of the parameters  kp  and mp  

with the similarity parameter km  is that  ( , ) ( , )N k km N m   f x p f x p holds for all .Nx R  This also 

implies the explicit form of the right hand side: all of its coordinate functions do not depend on the parameters 

kp  and mp separately, only on their linear combination .k km mp p    

If the coordinate functions of the right hand side do not depend on the parameters kp  and 

mp separately, only on their linear combination k km mp p   up to an additive error , then 

  ( , ) ( , ) ( , ) ( , ).N k km N m N k km N m            f x p f x p x p x p   

If  ( , ) ( , ) ( , ),N k km N m     f x p f x p x p  then . .

( )
| ( , ) ( , ) | .Lt

km m kt s t e
L


  

x
s p p  

The figure shows in the case of the simple Volterra-Lotka model that approximate fulfilment of 

uniform global similarity implies approximate constancy of the right hand side. 
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Photochemical air pollutants, especially ozone, are the important chemical species that affects both vegetation 

and human health. Elevated ozone concentrations can be potentially damaging to agricultural and natural 

vegetation. Occasional extreme concentrations may cause visible injury to the vegetation while the long-term, 

growing- season averaged exposure can result in decreased productivity and crop yield. Air quality measures, 

based on Accumulated exposure Over a Threshold (AOT) such as AOT40 were therefore developed based on 

experiment in order to try to mitigate the damage. However, since ozone enters plants through the stomata, the 

response of vegetation to changes in the atmospheric ozone concentrations is more directly influenced by the 

stomatal ozone flux than its atmospheric concentration. Therefore, it has been suggested that the stomatal ozone 

flux is a more appropriate measure for ozone damage than the concentration based values. Stomatal flux of 

ozone is controlled by ozone concentration and by deposition velocity via parameterization of the canopy and 

stomatal conductances. Plant stomatal conductance plays an important role in most of all deposition models. In 

Jarvis model, multiplicative algorithm of stomatal conductance is applied. This type of model includes functions 

for the effects of photosynthetically active radiation, air temperature, soil water content, and other parameters on 

the stomatal conductance. The values of the model input parameters are very uncertain. Therefore, these 

parameters may give rise to uncertainties in simulation results. The nonlinear models can magnify the 

uncertainty of some parameters and damp it to each others. This means that models may overestimate or 

underestimate the stomatal ozone fluxes. Sensitivity analysis is an effective tool for the exploration of the 

relation between the output of mathematical models and the input data, which comprise the values of parameters 

as well as the initial conditions. To investigate the effects of the most important parameters on stomatal 

conductance of the ozone a Monte Carlo analysis has been performed. The large number of parameter sets is 

generated according to the probability density functions of these parameters. The model is simulated with each 

of these parameter sets, and the results are processed with statistical methods. Determination of the probability 

density functions of the model results from the joint probability density functions of the parameters from 

measurements will be presented. Estimation of the high spatial variability of the stomatal ozone fluxes over 

Central Europe under continental climate region will be also discussed. For this purpose a coupled Eulerian 

photochemical reaction-transport model and a detailed ozone dry deposition model (TREX; Transport 

EXchange Model) have been developed, and it has been coupled to ALADIN meso-scale limited area numerical 

weather prediction model. Hereby, estimation of the ozone deposition can be performed for a routine way. 

 

 

Acknowledgement: We acknowledge the support of the Hungarian OTKA Postdoctoral Fellowship (OTKA 

D048673) and the Öveges Fellowship of the National Office for Research and Technology. 



 148 

A SENSITIVITY ANALYSIS BASED HYBRID ALGORITHM FOR 

PARAMETER DETERMINATION IN STIFF BIOCHEMICAL PATHWAYS 
 

Y. Wang1, R. Zou1, A. Ghosh1 

Drexel University, USA 

avijit@physics.drexel.edu 

 

Sensitivity analysis is one of the most effective approaches for studying mathematical models of 

biochemical systems. One of the key issues in modern systems biology is the development of simulation 

parameters that may be used to build the models themselves. To build a quantitative, mathematically robust 

description of a biomedical pathway or network, both model structure and realistic kinetic parameter values are 

necessary [1-6].  We will present a recently developed sensitivity analysis based parameter estimation method 

designed for stiff biological systems.  The parameter optimization method developed is a hybrid global/local 

optimization method and is based on a fast time-adaptive Rosenbrock sensitivity analysis integrator developed 

by our lab [7].  

The basis for the optimization procedure is the stiff Rosenbrock integrator, which has been adapted for 

sensitivity analysis using a direct sensitivity approach. Automated sparse Jacobian and Hessian calculations of 

the coupled system (the original model equations and the sensitivity equations) have been implemented in the 

freely available systems biology CellSim [8]. To test this new integration method, both time-dependent 

concentration and parameter-based sensitivity coefficients are measured using several standard integration 

schemes. A key advantage of our scheme is the efficiency of calculating the sensitivity analysis. The method 

developed is shown to perform sensitivity analysis in a manner that is cost effective computationally with 

moderate accuracy and is furthermore several orders of magnitude faster than standard integration techniques 

[7].  

In general, complex systems of biological reactions include hundreds of species involving large 

numbers of interactions, as well as parameter values that can span several orders of magnitude. For this reason, 

stiff integrators such as the Rosenbrock methods are a preferred method for solving biochemical systems and 

hold much promise in following the time evolution of the coupled system. The price of the Rosenbrock 

integrator, which has forestalled its use in systems biology, is the need to calculate the Hessian and the Jacobian 

terms of the original set of equations in an automated fashion. This task becomes more difficult as the scale of 

the biochemical systems becomes larger. We have developed a module that generates all the necessary terms 

automatically as well as analytically determine the appropriate matrix decompositions using the decomposition 

of the Jacobian of the original system equations. A custom sparse linear algebra package is used to increase the 

efficiency and reduce the computational overhead of each integration step. 

Parameter estimation algorithms typically minimize a cost function over a parameter space and may be 

generally classified in two groups: those that use global and local estimation techniques. Local algorithms are 

computationally efficient, but stop at the first encountered local minimum and consequently not generally 

capable of finding the true global minimum. In contrast, global algorithms are able to search the parameter space 

beyond local minima, though they are in general significantly more computationally expensive. 

We propose to build an approach that combines the best of each of these procedures: a sensitivity-

based hybrid method that combines global algorithms. This hybrid approach tests several global optimization 

methods, including genetic algorithms (GA) [9-11], simulated annealing (SA) [12] with a series of local 

algorithms including conjugate gradient (CG), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the steepest 

decent method.  The gradient information for the local integrators comes from our groups recently developed 

fast adaptive time step sensitivity analysis integration method [7] . A pure GA, a pure SA as well a full suite of 

sensitivity analysis based hybrid algorithms will be tested and compared. Three cases are chosen as benchmark: 

a) 36 parameters optimization of a nonlinear biochemical model [1], b) 20 parameters optimization of 

mechanism of irreversible inhibition of HIV protease [13], c) Complex mitogen-activated protein kinase 

(MAPK) pathway model of Bhalla and Iyengar [14]. All the procedures discussed will be made freely available 

to the scientific community under the GPL (Gnu Public License). 
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